Spaces:
Sleeping
Sleeping
File size: 6,760 Bytes
586cd16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import pandas as pd
import pickle
import os
MAIN_FOLDER = os.path.dirname(__file__)
# Define params names
PARAMS_NAME = [
'orderAmount',
'orderState',
'paymentMethodRegistrationFailure',
'paymentMethodType',
'paymentMethodProvider',
'paymentMethodIssuer',
'transactionAmount',
'transactionFailed',
'emailDomain',
'emailProvider',
'customerIPAddressSimplified',
'sameCity',
]
# Load model
with open("model/modelo_proyecto_final.pkl", "rb") as f:
model = pickle.load(f)
# Columnas
COLUMNS_PATH = "model/categories_ohe_without_fraudulent.pickle"
with open(COLUMNS_PATH, 'rb') as handle:
ohe_tr = pickle.load(handle)
# ver como queda el encadenado de las carpetas
BINS_ORDER=os.path.join(MAIN_FOLDER,"model/saved_bins_order.pickle")
with open (BINS_ORDER, 'rb') as handle:
new_saved_bins_order=pickle.load(handle)
BINS_TRANSACTION=os.path.join(MAIN_FOLDER, "model/saved_bins_transaction.pickle")
with open (BINS_TRANSACTION, 'rb') as handle:
new_saved_bins_transaction=pickle.load(handle)
def predict(*args):
answer_dict = {}
for i in range(len(PARAMS_NAME)):
answer_dict[PARAMS_NAME[i]] = [args[i]]
single_instance = pd.DataFrame.from_dict(answer_dict)
single_instance["orderAmount"]=single_instance["orderAmount"].astype(float)
single_instance["orderAmount"]=pd.cut(single_instance["orderAmount"],
bins=new_saved_bins_order,
include_lowest=True)
single_instance["transactionAmount"]=single_instance["transactionAmount"].astype(int)
single_instance["transactionAmount"]=pd.cut(single_instance["transactionAmount"],
bins=new_saved_bins_order,
include_lowest=True)
# Reformat columns
single_instance_ohe = pd.get_dummies(single_instance).reindex(columns = ohe_tr).fillna(0)
prediction = model.predict(single_instance_ohe)
type_of_fraud=int(prediction[0])
response = {"tipo de fraude":type_of_fraud}
# Adaptación respuesta
response = "Error parsing value"
if type_of_fraud == 0:
response = "No fraud"
if type_of_fraud == 1:
response = "Fraud"
if type_of_fraud == 2:
response = "Revisar"
return response
with gr.Blocks() as demo:
gr.Markdown(
"""
# DETECTION OF FRAUD 🔧🚜
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Predecir Fraude.
"""
)
orderState = gr.Radio(
label="estado orden",
choices=["pending", "fulfilled", "failed"],
value="pending"
)
paymentMethodRegistrationFailure=gr.Radio(
label="failure payment method",
choices=["True", "False"],
value="True"
)
paymentMethodType=gr.Radio(
label="metodo pago",
choices=["card", "apple pay", "paypal", "bitcoin"],
value="card"
)
paymentMethodProvider=gr.Radio(
label="proveedor pago",
choices=["JCB 16 digit","VISA 16 digit","Voyager","Diners Club / Carte Blanche","Maestro","VISA 13 digit","Discover","American Express","JCB 15 digit","Mastercard"],
value="Mastercard"
)
paymentMethodIssuer=gr.Radio(
label="emisor",
choices=["Her Majesty Trust","Vertex Bancorp","Fountain Financial Inc.","His Majesty Bank Corp.","Bastion Banks","Bulwark Trust Corp.","Citizens First Banks","Grand Credit Corporation","Solace Banks","Rose Bancshares","B","e","c","r","n","x","o","a","p"],
value="o"
)
transactionFailed=gr.Radio(
label="transacion fallida",
choices=["True", "False"],
value="True"
)
emailDomain=gr.Radio(
label="dominio",
choices=["weird","com","biz","org","net","info"],
value="weird"
)
emailProvider=gr.Radio(
label="proveedor",
choices=["weird","ohter","gmail","yahoo","hotmail"],
value="weird"
)
customerIPAddressSimplified=gr.Radio(
label="ip",
choices=["only letters","digits_and_letters"],
value="only letters"
)
sameCity=gr.Radio(
label="misma ciudad",
choices=["unknown","no","yes"],
value="yes"
)
orderAmount = gr.Slider(label="Order Amount", minimum=0, maximum=1000, step=1, randomize=True)
transactionAmount=gr.Slider(label="Transaction Amount", minimum=0, maximum=1000, step=1, randomize=True)
with gr.Column():
gr.Markdown(
"""
## Predicción
"""
)
label = gr.Label(label="Fraud_detection")
predict_btn = gr.Button(value="Evaluar")
predict_btn.click(
predict,
inputs=[
orderAmount,
orderState,
paymentMethodRegistrationFailure,
paymentMethodType,
paymentMethodProvider,
paymentMethodIssuer,
transactionAmount,
transactionFailed,
emailDomain,
emailProvider,
customerIPAddressSimplified,
sameCity,
],
outputs=[label],
)
gr.Markdown(
"""
<p style='text-align: center'>
<a href='https://www.escueladedatosvivos.ai/cursos/bootcamp-de-data-science'
target='_blank'>Proyecto demo creado en el bootcamp de EDVAI 🤗
</a>
</p>
"""
)
demo.launch()
|