File size: 6,760 Bytes
586cd16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

import gradio as gr
import pandas as pd
import pickle
import os

MAIN_FOLDER = os.path.dirname(__file__)

# Define params names
PARAMS_NAME = [
    'orderAmount', 
    'orderState',
    'paymentMethodRegistrationFailure',
    'paymentMethodType',
    'paymentMethodProvider',
    'paymentMethodIssuer',
    'transactionAmount',
    'transactionFailed',
    'emailDomain',
    'emailProvider',
    'customerIPAddressSimplified',
    'sameCity',
]

# Load model
with open("model/modelo_proyecto_final.pkl", "rb") as f:
    model = pickle.load(f)

# Columnas
COLUMNS_PATH = "model/categories_ohe_without_fraudulent.pickle"
with open(COLUMNS_PATH, 'rb') as handle:
    ohe_tr = pickle.load(handle)



# ver como queda el encadenado de las carpetas
BINS_ORDER=os.path.join(MAIN_FOLDER,"model/saved_bins_order.pickle")
with open (BINS_ORDER, 'rb') as handle:
    new_saved_bins_order=pickle.load(handle)


BINS_TRANSACTION=os.path.join(MAIN_FOLDER, "model/saved_bins_transaction.pickle")
with open (BINS_TRANSACTION, 'rb') as handle:
    new_saved_bins_transaction=pickle.load(handle)   




def predict(*args):
    answer_dict = {}

    for i in range(len(PARAMS_NAME)):
        answer_dict[PARAMS_NAME[i]] = [args[i]]

    single_instance = pd.DataFrame.from_dict(answer_dict)


    single_instance["orderAmount"]=single_instance["orderAmount"].astype(float)
    single_instance["orderAmount"]=pd.cut(single_instance["orderAmount"],
                                                                        bins=new_saved_bins_order,
                                                                        include_lowest=True)
    single_instance["transactionAmount"]=single_instance["transactionAmount"].astype(int)
    single_instance["transactionAmount"]=pd.cut(single_instance["transactionAmount"],
                                                                        bins=new_saved_bins_order,
                                                                        include_lowest=True)





    
    # Reformat columns
    single_instance_ohe = pd.get_dummies(single_instance).reindex(columns = ohe_tr).fillna(0)
    
    prediction = model.predict(single_instance_ohe)

    type_of_fraud=int(prediction[0])
    
    response = {"tipo de fraude":type_of_fraud}

    # Adaptación respuesta
    response = "Error parsing value"
    if type_of_fraud == 0:
        response = "No fraud"
    if type_of_fraud == 1:
        response = "Fraud"
    if type_of_fraud == 2:
        response = "Revisar"


    return response


with gr.Blocks() as demo:
    gr.Markdown(
        """

        # DETECTION OF FRAUD 🔧🚜

        """
    )

    with gr.Row():
        with gr.Column():

            gr.Markdown(
                """

                ## Predecir Fraude.

                """
            )
            
            orderState = gr.Radio(
                label="estado orden",
                choices=["pending", "fulfilled", "failed"],
                value="pending"
                )

            paymentMethodRegistrationFailure=gr.Radio(
                label="failure payment method",
                choices=["True", "False"],
                value="True"
                )

            paymentMethodType=gr.Radio(
                label="metodo pago",
                choices=["card", "apple pay", "paypal", "bitcoin"],
                value="card"
                )


            paymentMethodProvider=gr.Radio(
                label="proveedor pago",
                choices=["JCB 16 digit","VISA 16 digit","Voyager","Diners Club / Carte Blanche","Maestro","VISA 13 digit","Discover","American Express","JCB 15 digit","Mastercard"],
                value="Mastercard"
                )

            paymentMethodIssuer=gr.Radio(
                label="emisor",
                choices=["Her Majesty Trust","Vertex Bancorp","Fountain Financial Inc.","His Majesty Bank Corp.","Bastion Banks","Bulwark Trust Corp.","Citizens First Banks","Grand Credit Corporation","Solace Banks","Rose Bancshares","B","e","c","r","n","x","o","a","p"],
                value="o"
                )

            transactionFailed=gr.Radio(
                label="transacion fallida",
                choices=["True", "False"],
                value="True"
                )                

            emailDomain=gr.Radio(
                label="dominio",
                choices=["weird","com","biz","org","net","info"],
                value="weird"
                )

            emailProvider=gr.Radio(
                label="proveedor",
                choices=["weird","ohter","gmail","yahoo","hotmail"],
                value="weird"
                )

            customerIPAddressSimplified=gr.Radio(
                label="ip",
                choices=["only letters","digits_and_letters"],
                value="only letters"
                )

            sameCity=gr.Radio(
                label="misma ciudad",  
                choices=["unknown","no","yes"],     
                value="yes"
                ) 
                
                
            

            orderAmount = gr.Slider(label="Order Amount", minimum=0, maximum=1000, step=1, randomize=True)

            transactionAmount=gr.Slider(label="Transaction Amount", minimum=0, maximum=1000, step=1, randomize=True)
            
            
            
            

            
            
            
        with gr.Column():

            gr.Markdown(
                """

                ## Predicción

                """
            )

            label = gr.Label(label="Fraud_detection")
            predict_btn = gr.Button(value="Evaluar")
            predict_btn.click(
                predict,
                inputs=[
                   orderAmount, 
                   orderState,
                   paymentMethodRegistrationFailure,
                   paymentMethodType,
                   paymentMethodProvider,
                   paymentMethodIssuer,
                   transactionAmount,
                   transactionFailed,
                   emailDomain,
                   emailProvider,
                   customerIPAddressSimplified,
                   sameCity,
                ],
                outputs=[label],
            )
    gr.Markdown(
        """

        <p style='text-align: center'>

            <a href='https://www.escueladedatosvivos.ai/cursos/bootcamp-de-data-science' 

                target='_blank'>Proyecto demo creado en el bootcamp de EDVAI 🤗

            </a>

        </p>

        """
    )

demo.launch()