File size: 12,652 Bytes
0946fb8
b4523f4
d3a44ea
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
 
 
a1e2229
 
08d974f
 
 
 
 
a1e2229
 
 
 
0d0f773
a1e2229
08d974f
 
 
 
d3a44ea
 
 
 
 
 
 
 
a1e2229
 
 
 
0d0f773
 
 
 
 
 
 
 
 
 
 
 
 
a1e2229
0d0f773
a1e2229
d3a44ea
 
 
 
 
 
 
 
a1e2229
 
 
 
d3a44ea
 
 
08d974f
d3a44ea
08d974f
d3a44ea
 
 
 
08d974f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f773
 
 
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
 
 
 
 
 
08d974f
d3a44ea
08d974f
 
 
 
 
 
 
 
 
 
d3a44ea
 
08d974f
 
 
 
 
 
d3a44ea
08d974f
 
d3a44ea
08d974f
 
 
 
d3a44ea
08d974f
d3a44ea
08d974f
 
 
d3a44ea
08d974f
 
d3a44ea
08d974f
0d0f773
08d974f
 
 
 
 
 
 
 
 
 
0d0f773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a38abf
0d0f773
 
 
 
 
 
d3a44ea
 
 
08d974f
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
 
 
0d0f773
d3a44ea
 
 
 
 
 
 
 
 
 
 
08d974f
 
 
 
 
 
 
d3a44ea
 
 
 
 
 
 
 
 
 
 
0d0f773
d3a44ea
0d0f773
 
08d974f
 
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d974f
d3a44ea
 
08d974f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f773
d3a44ea
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
08d974f
d3a44ea
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
 
 
 
 
08d974f
d3a44ea
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from ast import List
from fastapi import FastAPI, UploadFile, File, Form, HTTPException,APIRouter, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional
import pytesseract
from PIL import Image
import io
import fitz  
import base64
import traceback
import pandas as pd
import re
import os
import google.generativeai as genai
from dotenv import load_dotenv
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, firestore
from google.generativeai import generative_models

from api_key import GEMINI_API_KEY
from bert import analyze_with_clinicalBert, classify_disease_and_severity, extract_non_negated_keywords, analyze_measurements, detect_past_diseases
from disease_links import diseases as disease_links
from disease_steps import disease_next_steps
from disease_support import disease_doctor_specialty, disease_home_care
from past_reports import router as reports_router, db_fetch_reports

model = genai.GenerativeModel('gemini-1.5-flash')
df = pd.read_csv("measurement.csv")
df.columns = df.columns.str.lower()
df['measurement'] = df['measurement'].str.lower()

disease_links = {"cholesterol": "https://www.webmd.com/cholesterol"}
disease_next_steps = {"cholesterol": ["Consult a doctor for a lipid panel."]}
disease_doctor_specialty = {"cholesterol": "Cardiologist"}
disease_home_care = {"cholesterol": ["Maintain a healthy diet."]}

app = FastAPI()

api = APIRouter(prefix="/api")
app.include_router(api)


'''app.add_middleware(
    CORSMiddleware,
    allow_origins=[
        "http://localhost:8002"
        "http://localhost:9000"
        "http://localhost:5501"
    ],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)'''


app.mount("/app", StaticFiles(directory="web", html=True), name="web")
app.include_router(reports_router)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
def root():
    return RedirectResponse(url="/app/")
    
EXTRACTED_TEXT_CACHE: str = ""

try:
    gemini_api_key = os.environ.get("GEMINI_API_KEY", GEMINI_API_KEY)
    if not gemini_api_key:
        raise ValueError("No Gemini API key found in environment or api_key.py")
    genai.configure(api_key=gemini_api_key)
except Exception as e:
    raise RuntimeError(f"Failed to configure Gemini API: {e}")

try:
    cred_path = os.environ.get("FIREBASE_SERVICE_ACCOUNT_KEY_PATH", "firebase_key.json")
    
    if not os.path.exists(cred_path):
        raise ValueError(
            f"Firebase service account key not found. Looked for: {cred_path}. "
            "Set FIREBASE_SERVICE_ACCOUNT_KEY_PATH or place firebase_key.json in project root."
        )

    cred = credentials.Certificate(cred_path)
    firebase_admin.initialize_app(cred)
    db = firestore.client()
except Exception as e:
    raise RuntimeError(f"Failed to configure Firebase: {e}")

class ChatRequest(BaseModel):
    user_id: Optional[str] = "anonymous"
    question: str

class ChatResponse(BaseModel):
    answer: str

system_prompt_chat = """
*** Role: Medical Guidance Facilitator
*** Objective:
Analyze medical data, provide concise, evidence-based insights, and recommend actionable next steps for patient care. This includes suggesting local physicians or specialists within a user-specified mile radius, prioritizing in-network options when insurance information is available, and maintaining strict safety compliance with appropriate disclaimers.
*** Capabilities:
1. Report Analysis – Review and interpret findings in uploaded medical reports.
2. Historical Context – Compare current findings with any available previous reports.
3. Medical Q&A – Answer specific questions about the report using trusted medical sources.
4. Specialist Matching – Recommend relevant physician specialties for identified conditions.
5. Safety Protocols – Include a brief disclaimer encouraging users to verify information, confirm insurance coverage, and consult providers directly.
*** Response Structure:
Start with a direct answer to the user’s primary question (maximum 4 concise sentences, each on a new line).
If a physician/specialist is needed, recommend at least two local providers within the requested radius (include name, specialty, address, distance, and contact info).
If insurance details are available, indicate which physicians are in-network.
End with a short safety disclaimer.
***Input Fields:
Provided Document Text: {document_text}
User Question: {user_question}
Assistant Answer:
"""

def extract_images_from_pdf_bytes(pdf_bytes: bytes) -> list:
    print("***Start of Code***")
    doc = fitz.open(stream=pdf_bytes, filetype="pdf")
    images = []
    for page in doc:
        pix = page.get_pixmap()
        buf = io.BytesIO()
        buf.write(pix.tobytes("png"))
        images.append(buf.getvalue())
    return images


def clean_ocr_text(text: str) -> str:
    text = text.replace("\x0c", " ")
    text = text.replace("\u00a0", " ")    
    text = re.sub(r'(\d)\s*\.\s*(\d)', r'\1.\2', text) 
    text = re.sub(r'\s+', ' ', text)      
    return text.strip()

def ocr_text_from_image(image_bytes: bytes) -> str:
    base64_image = base64.b64encode(image_bytes).decode('utf-8')

    image_content = {
        'mime_type': 'image/jpeg',
        'data': base64_image
    }

    prompt = "Could you read this document and just take all the text that is in it and just paste it back to me in text format. Open and read this document:"

    response = model.generate_content(
        [prompt, image_content]
    )

    response_text = response.text
    print(response_text)

    return response_text
def get_past_reports_from_firestore(user_id: str):
    try:
        reports_ref = db.collection('users').document(request.user_id).collection('reports')
        docs = reports_ref.order_by('timestamp', direction=firestore.Query.DESCENDING).limit(10).stream()
        
        history_text = ""
        for doc in docs:
            report_data = doc.to_dict()
            history_text += f"Report from {report_data.get('timestamp', 'N/A')}:\n{report_data.get('ocr_text', 'No OCR text found')}\n\n"
    except Exception as e:
        history_text = "No past reports found for this user."
    return history_text

def get_past_reports_from_sqllite(user_id: str):
    try:
        reports = db_fetch_reports(user_id=user_id, limit=10, offset=0)
        
        history_text = ""
        for report in reports:
            history_text += f"Report from {report.get('report_date', 'N/A')}:\n{report.get('ocr_text', 'No OCR text found')}\n\n"
    except Exception as e:
        history_text = "No past reports found for this user."
    return history_text

@app.post("/chat/", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
    """
    Chatbot endpoint that answers questions based on the last analyzed document and user history.
    """
    print("Received chat request for user:", request.user_id)
    #history_text = get_past_reports_from_firestore(request.user_id)
    history_text = get_past_reports_from_sqllite(request.user_id)

    full_document_text = EXTRACTED_TEXT_CACHE + "\n\n" + "PAST REPORTS:\n" + history_text

    if not full_document_text:
        raise HTTPException(status_code=400, detail="No past reports or current data exists for this user")
    
    
   
    
    try:
        full_prompt = system_prompt_chat.format(
            document_text=full_document_text,
            user_question=request.question
        )
        response = model.generate_content(full_prompt)
        return ChatResponse(answer=response.text)
    except Exception as e:
        print(f"Gemini API error: {traceback.format_exc()}")
        raise HTTPException(status_code=500, detail=f"An error occurred during chat response generation: {e}")

@app.post("/analyze/")
async def analyze(
    file: UploadFile = File(...),
    model: Optional[str] = Form("bert"),
    mode: Optional[str] = Form(None)
):
    global resolution, EXTRACTED_TEXT_CACHE
    if not file.filename:
        raise HTTPException(status_code=400, detail="No file uploaded.")

    filename = file.filename.lower()
    detected_diseases = set()
    ocr_full = ""
    print("Received request for file:", filename)
    if filename.endswith(".pdf"):
        pdf_bytes = await file.read()
        image_bytes_list = extract_images_from_pdf_bytes(pdf_bytes)
    else:
        content = await file.read()
        image_bytes_list = [content]

    for img_bytes in image_bytes_list:
        ocr_text = ocr_text_from_image(img_bytes)
        ocr_full += ocr_text + "\n\n"
        ocr_full = clean_ocr_text(ocr_full)
        print(f"CALLING OCR FULL: {ocr_full}")
    
    EXTRACTED_TEXT_CACHE = ocr_full


    if model.lower() == "gemini":
        return {"message": "Gemini model not available; please use BERT model."}

    found_diseases = extract_non_negated_keywords(ocr_full)
    past = detect_past_diseases(ocr_full)

    for disease in found_diseases:
        if disease in past:    
            severity = classify_disease_and_severity(disease)
            detected_diseases.add(((f"{disease}(detected as historical condition, but still under risk.)"), severity))
        else:
            severity = classify_disease_and_severity(disease)
            detected_diseases.add((disease, severity))
           
        
   
    print("Detected diseases:", detected_diseases)
    ranges = analyze_measurements(ocr_full, df)


    resolution = []
    detected_ranges = []
    for disease, severity in detected_diseases:
        link = disease_links.get(disease.lower(), "https://www.webmd.com/")
        next_steps = disease_next_steps.get(disease.lower(), ["Consult a doctor."])
        specialist = disease_doctor_specialty.get(disease.lower(), "General Practitioner")
        home_care = disease_home_care.get(disease.lower(), [])

        resolution.append({
            "findings": disease.upper(),
            "severity": severity,
            "recommendations": next_steps,
            "treatment_suggestions": f"Consult a specialist: {specialist}",
            "home_care_guidance": home_care,
            "info_link": link
                      
    })
    
    for i in ranges:
        condition = i[0]
        measurement = i[1]
        unit = i[2]
        severity = i[3]
        value = i[4]
        range_value = i[5]   # renamed to avoid overwriting Python's built-in "range"
                    
        link_range = disease_links.get(condition.lower(), "https://www.webmd.com/")
        next_steps_range = disease_next_steps.get(condition.lower(), ['Consult a doctor'])
        specialist_range = disease_doctor_specialty.get(condition.lower(), "General Practitioner")
        home_care_range = disease_home_care.get(condition.lower(), [])
                    
        condition_version = condition.upper()    
        severity_version = severity.upper()
                
        resolution.append({
            "findings": f"{condition_version} -- {measurement}",
            "severity": f"{value} {unit} - {severity_version}",
            "recommendations": next_steps_range,
            "treatment_suggestions": f"Consult a specialist: {specialist_range}",
            "home_care_guidance": home_care_range,
            "info_link": link_range
        })
                            
    
    ranges = analyze_measurements(ocr_full, df)
    print(analyze_measurements(ocr_full, df))
    # print ("Ranges is being printed", ranges)
    historical_med_data = detect_past_diseases(ocr_full)
    
    return {
        "ocr_text": ocr_full.strip(),
        "Detected_Anomolies": resolution,
    }

class TextRequest(BaseModel):
    text: str
    
@app.post("/analyze-text")
async def analyze_text_endpoint(request: TextRequest):
    try:
        return analyze_text(request.text)
    except Exception as e:
        print("ERROR in /analyze-text:", traceback.format_exc())
        raise HTTPException(status_code=500, detail=f"Error analyzing text: {str(e)}")
    

def analyze_text(text):
    severity, disease = classify_disease_and_severity(text)
    return {
        "extracted_text": text,
        "summary": f"Detected Disease: {disease}, Severity: {severity}"
    }


@app.get("/health/")
def health():
    return {"response": "ok"}

@app.on_event("startup")
def _log_routes():
    from fastapi.routing import APIRoute
    print("Mounted routes:")
    for r in app.routes:
        if isinstance(r, APIRoute):
            print(" ", r.path, r.methods)