Spaces:
Running
Running
File size: 22,607 Bytes
d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ec85693 d3a44ea ff3e1b4 ec85693 d3a44ea ff3e1b4 d3a44ea ec85693 d3a44ea ec85693 d3a44ea ec85693 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ec85693 d3a44ea ff3e1b4 d3a44ea ff3e1b4 d3a44ea ff3e1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import pytesseract
import cv2
import numpy as np
from transformers import BertTokenizer, BertForSequenceClassification
from PIL import Image
import platform
import torch
from disease_links import diseases
import spacy
from negspacy.negation import Negex
from fuzzywuzzy import fuzz
from spacy.util import filter_spans
from spacy.matcher import Matcher
import pandas as pd
import re
import difflib
from api_key import GEMINI_API_KEY
hba1c = ["hbaic", "hdate", ""]
import google.generativeai as genai
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.5-flash-lite')
non_negated_diseases = []
synonyms = {
"hba1c": ["hba1c", "hbaic", "hdate", "a1c", "hemoglobin a1c", "glycated hemoglobin", "hba", "hda", "hbic"],
"fasting glucose": ["fasting glucose", "fasting-glucose", "fasting blood sugar", "fbs"],
"ogtt": ["ogtt", "oral glucose tolerance test", "glucose tolerance test"],
"ldl": ["ldl", "ldl-c", "low density lipoprotein", "bad cholesterol"],
"hdl": ["hdl", "hdl-c", "high density lipoprotein", "good cholesterol"],
"triglycerides": ["triglycerides", "trigs", "tg"],
"total cholesterol": ["total cholesterol", "cholesterol total", "chol", "tc"],
"non-hdl": ["non-hdl", "non hdl", "nonhdl"],
# Thyroid
"tsh": ["tsh", "thyroid stimulating hormone"],
"free t4": ["free t4", "free-t4", "ft4", "free thyroxine"],
"free t3": ["free t3", "free-t3", "ft3", "free triiodothyronine"],
# Inflammation
"crp": ["crp", "c-reactive protein"],
"esr": ["esr", "erythrocyte sedimentation rate"],
# Vitamins
"vitamin-b12": ["vitamin-b12", "vitamin b12", "b12", "vit b12", "cobalamin"],
"vitamin-d": ["vitamin-d", "vitamin d", "vit d", "25-oh d", "25-hydroxy vitamin d"],
"vitamin-a": ["vitamin-a", "vitamin a", "vit a"],
"vitamin-e": ["vitamin-e", "vitamin e", "vit e"],
# Electrolytes
"sodium": ["sodium", "na"],
"potassium": ["potassium", "k"],
"calcium": ["calcium", "ca"],
"magnesium": ["magnesium", "mg"],
# Blood Pressure
"systolic": ["systolic", "sbp"],
"diastolic": ["diastolic", "dbp"],
# CBC
"wbc": ["wbc", "white blood cells", "white cell count"],
"rbc": ["rbc", "red blood cells", "red cell count"],
"hemoglobin": ["hemoglobin", "hb", "hgb"],
"hematocrit": ["hematocrit", "hct"],
"platelets": ["platelets", "plt"],
# Iron
"serum iron": ["serum iron", "iron"],
"ferritin": ["ferritin"],
"tibc": ["tibc", "total iron binding capacity"],
"transferrin saturation": ["transferrin saturation", "tsat"],
# Liver
"alt": ["alt", "sgpt"],
"ast": ["ast", "sgot"],
"alp": ["alp", "alkaline phosphatase"],
"bilirubin total": ["bilirubin total", "total bilirubin"],
"albumin": ["albumin"],
# Kidney
"creatinine": ["creatinine"],
"bun": ["bun", "blood urea nitrogen"],
"egfr": ["egfr", "estimated gfr"],
"urine protein": ["urine protein", "proteinuria"],
"urine albumin": ["urine albumin", "microalbumin"],
# Respiratory
"spo2": ["spo2", "oxygen saturation", "o2 sat"],
"pco2": ["pco2", "carbon dioxide partial pressure"],
"po2": ["po2", "oxygen partial pressure"],
"fev1": ["fev1", "forced expiratory volume"],
"fevi": ["fevi", "fev1"], # common OCR mistake
# Coagulation
"inr": ["inr"],
"pt": ["pt", "prothrombin time"],
"aptt": ["aptt", "partial thromboplastin time"],
"fibrinogen": ["fibrinogen"],
# Hormones
"cortisol": ["cortisol"],
"testosterone": ["testosterone"],
"estradiol": ["estradiol", "estrogen"],
"progesterone": ["progesterone"],
# Infection
"procalcitonin": ["procalcitonin"],
"lactate": ["lactate"],
# Cardiac extras
"troponin": ["troponin", "trop"],
# Vitals
"temperature": ["temperature", "temp", "body temp"],
"heart rate": ["heart rate", "pulse", "hr"],
"oxygen saturation": ["oxygen saturation", "spo2", "o2 sat"],
}
if platform.system() == "Darwin":
pytesseract.pytesseract.tesseract_cmd = '/usr/local/bin/tesseract'
elif platform.system() == "Windows":
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
df = pd.read_csv("measurement.csv")
df.columns = df.columns.str.lower()
df['measurement'] = df['measurement'].str.lower()
def normalize_term(term: str) -> str:
term = term.lower().strip()
for key, values in synonyms.items():
if term in values:
return key
# Fuzzy matching for OCR typos
all_terms = [t for values in synonyms.values() for t in values]
closest = difflib.get_close_matches(term, all_terms, n=1, cutoff=0.75)
if closest:
for key, values in synonyms.items():
if closest[0] in values:
return key
return term
def extract_number(text):
match = re.search(r'(\d+\.?\d*)', text)
return float(match.group(1)) if match else None
def analyze_measurements(text, df):
results = []
final_numbers = []
final_version = ()
for measurement in df["measurement"].unique():
pattern = rf"{measurement}[^0-9]*([\d\.]+)"
matches = re.findall(pattern, text, re.IGNORECASE)
for match in matches:
# Clean non-numeric characters like % or units
cleaned = re.sub(r"[^0-9.]", "", match)
if cleaned == "" or cleaned == ".":
continue # skip invalid
try:
value = float(cleaned)
except ValueError:
continue
normalized = normalize_term(measurement)
for _, row in df[df["measurement"].str.lower() == measurement.lower()].iterrows():
Condition = row['condition']
if row['low'] <= value <= row['high']:
results.append({
"Condition" : Condition,
"Measurement": normalized,
"unit": row['unit'],
"Value": value,
"severity": row["severity"],
"Range": f"{row['low']} to {row['high']} {row['unit']}"
})
#print (results)
for res in results:
final = [res['Condition'], res['Measurement'], res['unit'], res['severity'], res['Value'], res['Range']]
# final_numbers.append(f"Condition In Concern: {res['Condition']}. Measurement: {res['Measurement']} ({res['severity']}) β {res['Value']} "
# f"(Range: {res['Range']})")
final_numbers.append(final)
#print("analyze measurements res:", final_numbers)
return final_numbers
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("negex", config={"ent_types": ["DISEASE"]}, last=True)
matcher = Matcher(nlp.vocab)
clinical_bert_model = BertForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
clinical_bert_tokenizer = BertTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
past_patterns = [
[{"LOWER": "clinical"}, {"LOWER": "history:"}],
[{"LOWER": "past"}, {"LOWER": "medical:"}],
[{"LOWER": "medical"}, {"LOWER": "history:"}],
[{"LOWER": "history"}, {"LOWER": "of"}],
[{"LOWER": "prior"}],
[{"LOWER": "previous"}],
[{"LOWER": "formerly"}],
[{"LOWER": "resolved"}],
[{"LOWER": "used"}, {"LOWER": "to"}, {"LOWER": "have"}],
[{"LOWER": "was"}, {"LEMMA": "diagnosed"}],
[{"LOWER": "history"},]
]
def analyze_with_clinicalBert(extracted_text: str) -> str:
num_chars, num_words, description, medical_content_found, detected_diseases = analyze_text_and_describe(extracted_text)
non_negated_diseases = extract_non_negated_keywords(extracted_text) + analyze_measurements(extracted_text)
detected_measures = analyze_measurements(extracted_text, df)
severity_label, _ = classify_disease_and_severity(extracted_text)
if non_negated_diseases:
response = f"Detected medical content: {description}. "
response += f"Severity: {severity_label}. "
response += "Detected diseases (non-negated): " + ", ".join(non_negated_diseases) + ". "
if detected_measures:
detected_measurements = f"Detected measurements: {detected_measures}"
else:
response = "No significant medical content detected."
return response, detected_measurements
def extract_text_from_image(image):
if len(image.shape) == 2:
gray_img = image
elif len(image.shape) == 3:
gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
raise ValueError("Unsupported image format. Please provide a valid image.")
text = pytesseract.image_to_string(gray_img)
return text
past_disease_terms = []
matcher.add("PAST_CONTEXT", past_patterns)
def extract_non_negated_keywords(text, threshold=80):
doc = nlp(text)
found_diseases = set()
new_ents = []
print("Running spaCy sentence segmentation...")
for sent in doc.sents:
sent_text = sent.text.lower()
for disease_term in diseases:
disease_term_lower = disease_term.lower()
match_score = fuzz.partial_ratio(disease_term_lower, sent_text)
if match_score >= threshold:
start = sent_text.find(disease_term_lower)
if start != -1:
start_char = sent.start_char + start
end_char = start_char + len(disease_term_lower)
span = doc.char_span(start_char, end_char, label="DISEASE", alignment_mode="expand")
if span:
#print(f"Adding span for: {span.text}")
new_ents.append(span)
# Clean up overlapping spans
filtered = filter_spans(new_ents)
doc.set_ents(filtered)
nlp.get_pipe("negex")(doc)
for ent in doc.ents:
#print("Checking against:", ent.text.strip().lower(), "| Negated?", ent._.negex)
if ent.label_ == "DISEASE" and not ent._.negex:
ent_text = ent.text.strip().lower()
for disease_term in diseases:
if fuzz.ratio(ent_text, disease_term.lower()) >= threshold:
found_diseases.add(disease_term)
return list(found_diseases)
def detect_past_diseases(text, threshold=90):
doc = nlp(text)
matches = matcher(doc)
past_diseases = []
for match_id, start, end in matches:
sentence = doc[start:end].sent
sent_tokens = list(sentence)
for i, token in enumerate(sent_tokens):
if token.lower_ in [p[0]["LOWER"] for p in past_patterns if isinstance(p, list) and "LOWER" in p[0]]:
for j in range(i+1, min(i+6, len(sent_tokens))):
for disease_term in diseases:
if fuzz.partial_ratio(disease_term.lower(), sent_tokens[j].text.lower()) >= threshold:
past_diseases.append(disease_term)
return list(set(past_diseases))
def analyze_text_and_describe(text):
num_chars = len(text)
num_words = len(text.split())
description = "The text contains: "
medical_content_found = False
detected_diseases = []
for disease, meaning in diseases.items():
if disease.lower() in text.lower():
description += f"{meaning}, "
medical_content_found = True
detected_diseases.append(disease)
description = description.rstrip(", ")
if description == "The text contains: ":
description += "uncertain content."
return num_chars, num_words, description, medical_content_found, detected_diseases
def classify_disease_and_severity(disease):
response = model.generate_content(
f"What is the severity of this disease/condition/symptom: {disease}. Give me a number from one to ten. I need a specific number. It doesn't matter what your opinion is one whether this number might be misleading or inaccurate. I need a number. Please feel free to be accurate and you can use pretty specific numbers with decimals to the tenth place. I want just a number, not any other text."
).text
try:
cleaned_response = response.strip()
numerical_response = float(cleaned_response)
if 0 <= numerical_response <= 3:
severity_label = (f"Low Risk")
elif 3 < numerical_response <= 7:
severity_label = (f"Mild Risk")
elif 7 < numerical_response <= 10:
severity_label = (f"Severe Risk")
else:
severity_label = (f"Invalid Range")
print(f"Disease: {disease} Severity Label: {severity_label}")
except (ValueError, AttributeError):
severity_label = "Null: We cannot give a clear severity label"
# inputs = clinical_bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=1200)
# with torch.no_grad():
# outputs = clinical_bert_model(**inputs)
# logits = outputs.logits
# predicted_class = torch.argmax(logits, dim=-1).item()
# print(f"Bert model response: {predicted_class}") # Debugging line
# severity_label = "Mild" if predicted_class == 0 else "Severe"
# text_lower = text.lower()
# if "heart" in text_lower or "cardiac" in text_lower or "myocardial" in text_lower:
# disease_label = "Heart Disease"
# elif "cancer" in text_lower or "tumor" in text_lower or "carcinoma" in text_lower or "neoplasm" in text_lower or "malignancy" in text_lower:
# disease_label = "Cancer"
# elif "diabetes" in text_lower or "hba1c" in text_lower or "blood sugar" in text_lower or "hyperglycemia" in text_lower:
# disease_label = "Diabetes"
# elif "asthma" in text_lower:
# disease_label = "Asthma"
# elif "arthritis" in text_lower or "rheumatoid arthritis" in text_lower or "osteoarthritis" in text_lower or "ra " in text_lower:
# disease_label = "Arthritis"
# elif "stroke" in text_lower or "cerebrovascular accident" in text_lower or "cva" in text_lower:
# disease_label = "Stroke"
# elif "allergy" in text_lower or "allergic" in text_lower or "hypersensitivity" in text_lower:
# disease_label = "Allergy"
# elif "hypertension" in text_lower or "high blood pressure" in text_lower or "hbp" in text_lower:
# disease_label = "Hypertension"
# elif "dengue" in text_lower:
# disease_label = "Dengue"
# elif "malaria" in text_lower:
# disease_label = "Malaria"
# elif "tuberculosis" in text_lower or "tb " in text_lower:
# disease_label = "Tuberculosis"
# elif "bronchitis" in text_lower or "chronic bronchitis" in text_lower:
# disease_label = "Bronchitis"
# elif "pneumonia" in text_lower:
# disease_label = "Pneumonia"
# elif "obesity" in text_lower or "overweight" in text_lower:
# disease_label = "Obesity"
# elif "epilepsy" in text_lower or "seizure" in text_lower or "convulsion" in text_lower:
# disease_label = "Epilepsy"
# elif "dementia" in text_lower or "alzheimer" in text_lower or "memory loss" in text_lower:
# disease_label = "Dementia"
# elif "autism" in text_lower or "asd" in text_lower:
# disease_label = "Autism Spectrum Disorder"
# elif "parkinson" in text_lower or "parkinson's disease" in text_lower:
# disease_label = "Parkinson's Disease"
# elif "leukemia" in text_lower or "blood cancer" in text_lower:
# disease_label = "Leukemia"
# elif "lymphoma" in text_lower:
# disease_label = "Lymphoma"
# elif "glaucoma" in text_lower:
# disease_label = "Glaucoma"
# elif "hepatitis" in text_lower or "liver inflammation" in text_lower:
# disease_label = "Hepatitis"
# elif "cirrhosis" in text_lower or "liver failure" in text_lower:
# disease_label = "Liver Cirrhosis"
# elif "kidney" in text_lower or "renal" in text_lower or "nephropathy" in text_lower or "ckd" in text_lower:
# disease_label = "Kidney Disease"
# elif "thyroid" in text_lower or "hyperthyroidism" in text_lower or "hypothyroidism" in text_lower:
# disease_label = "Thyroid Disorder"
# elif "hiv" in text_lower or "aids" in text_lower:
# disease_label = "HIV/AIDS"
# elif "anemia" in text_lower or "low hemoglobin" in text_lower or "iron deficiency" in text_lower:
# disease_label = "Anemia"
# elif "migraine" in text_lower or "headache" in text_lower:
# disease_label = "Migraine"
# elif "psoriasis" in text_lower:
# disease_label = "Psoriasis"
# elif "eczema" in text_lower or "atopic dermatitis" in text_lower:
# disease_label = "Eczema"
# elif "vitiligo" in text_lower:
# disease_label = "Vitiligo"
# elif "cholera" in text_lower:
# disease_label = "Cholera"
# elif "typhoid" in text_lower:
# disease_label = "Typhoid"
# elif "meningitis" in text_lower:
# disease_label = "Meningitis"
# elif "insomnia" in text_lower:
# disease_label = "Insomnia"
# elif "sleep apnea" in text_lower or "obstructive sleep apnea" in text_lower or "osa" in text_lower:
# disease_label = "Sleep Apnea"
# elif "fibromyalgia" in text_lower:
# disease_label = "Fibromyalgia"
# elif "lupus" in text_lower or "systemic lupus erythematosus" in text_lower or "sle" in text_lower:
# disease_label = "Lupus"
# elif "sclerosis" in text_lower or "multiple sclerosis" in text_lower or "ms " in text_lower:
# disease_label = "Multiple Sclerosis"
# elif "shingles" in text_lower or "herpes zoster" in text_lower:
# disease_label = "Shingles"
# elif "chickenpox" in text_lower or "varicella" in text_lower:
# disease_label = "Chickenpox"
# elif "covid" in text_lower or "corona" in text_lower or "sars-cov-2" in text_lower:
# disease_label = "COVID-19"
# elif "influenza" in text_lower or "flu" in text_lower:
# disease_label = "Influenza"
# elif "smallpox" in text_lower:
# disease_label = "Smallpox"
# elif "measles" in text_lower:
# disease_label = "Measles"
# elif "polio" in text_lower or "poliomyelitis" in text_lower:
# disease_label = "Polio"
# elif "botulism" in text_lower:
# disease_label = "Botulism"
# elif "lyme disease" in text_lower or "borreliosis" in text_lower:
# disease_label = "Lyme Disease"
# elif "zika virus" in text_lower or "zika" in text_lower:
# disease_label = "Zika Virus"
# elif "ebola" in text_lower:
# disease_label = "Ebola"
# elif "marburg virus" in text_lower:
# disease_label = "Marburg Virus"
# elif "west nile virus" in text_lower or "west nile" in text_lower:
# disease_label = "West Nile Virus"
# elif "sars" in text_lower:
# disease_label = "SARS"
# elif "mers" in text_lower:
# disease_label = "MERS"
# elif "e. coli infection" in text_lower or "ecoli" in text_lower:
# disease_label = "E. coli Infection"
# elif "salmonella" in text_lower:
# disease_label = "Salmonella"
# elif "hepatitis a" in text_lower:
# disease_label = "Hepatitis A"
# elif "hepatitis b" in text_lower:
# disease_label = "Hepatitis B"
# elif "hepatitis c" in text_lower:
# disease_label = "Hepatitis C"
# elif "rheumatoid arthritis" in text_lower:
# disease_label = "Rheumatoid Arthritis"
# elif "osteoporosis" in text_lower:
# disease_label = "Osteoporosis"
# elif "gout" in text_lower:
# disease_label = "Gout"
# elif "scleroderma" in text_lower:
# disease_label = "Scleroderma"
# elif "amyotrophic lateral sclerosis" in text_lower or "als" in text_lower:
# disease_label = "Amyotrophic Lateral Sclerosis"
# elif "muscular dystrophy" in text_lower:
# disease_label = "Muscular Dystrophy"
# elif "huntington's disease" in text_lower:
# disease_label = "Huntington's Disease"
# elif "alzheimers disease" in text_lower or "alzheimer's disease" in text_lower:
# disease_label = "Alzheimer's Disease"
# elif "chronic kidney disease" in text_lower or "ckd" in text_lower:
# disease_label = "Chronic Kidney Disease"
# elif "chronic obstructive pulmonary disease" in text_lower or "copd" in text_lower:
# disease_label = "Chronic Obstructive Pulmonary Disease"
# elif "addison's disease" in text_lower:
# disease_label = "Addison's Disease"
# elif "cushing's syndrome" in text_lower or "cushings syndrome" in text_lower:
# disease_label = "Cushing's Syndrome"
# elif "graves' disease" in text_lower or "graves disease" in text_lower:
# disease_label = "Graves' Disease"
# elif "hashimoto's thyroiditis" in text_lower or "hashimoto's disease" in text_lower:
# disease_label = "Hashimoto's Thyroiditis"
# elif "sarcoidosis" in text_lower:
# disease_label = "Sarcoidosis"
# elif "histoplasmosis" in text_lower:
# disease_label = "Histoplasmosis"
# elif "cystic fibrosis" in text_lower:
# disease_label = "Cystic Fibrosis"
# elif "epstein-barr virus" in text_lower or "ebv" in text_lower:
# disease_label = "Epstein-Barr Virus Infection"
# elif "mononucleosis" in text_lower or "mono" in text_lower:
# disease_label = "Mononucleosis"
# else:
# disease_label = "Unknown"
return severity_label
# Links for diseases
if __name__ == '__main__':
print("ClinicalBERT model and tokenizer loaded successfully.")
sample_text = """Patient Name: Jane Doe
Age: 62 Date of Visit: 2025-08-08
Physician: Dr. Alan Smith
Clinical Notes:
1. The patient denies having cancer at present.
However, her family history includes colon cancer in her father.
2. The patient has a history of type 2 diabetes and is currently taking metformin.
Latest HBA1C result: 7.2% (previously 6.9%).
3. Fasting glucose measured today was 145 mg/dL, which is above the normal range of 70β99
mg/dL.
This may indicate poor glycemic control.
4. The patient reported no chest pain or signs of heart disease.
5. Overall, there is no evidence of tumor recurrence at this time."""
print(detect_past_diseases(sample_text, threshold=90))
print(extract_non_negated_keywords(sample_text, threshold=80))
print(analyze_measurements(sample_text, df))
|