File size: 22,607 Bytes
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3e1b4
 
 
 
 
d3a44ea
 
ff3e1b4
d3a44ea
 
 
 
ff3e1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a44ea
ff3e1b4
d3a44ea
 
 
 
 
 
 
ff3e1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a44ea
 
 
 
 
 
 
ff3e1b4
d3a44ea
 
 
ff3e1b4
d3a44ea
ff3e1b4
 
 
 
 
 
 
 
 
 
 
d3a44ea
 
 
 
 
ff3e1b4
 
d3a44ea
 
 
 
 
ec85693
d3a44ea
 
ff3e1b4
 
 
 
ec85693
d3a44ea
 
ff3e1b4
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec85693
d3a44ea
 
 
 
 
 
 
 
ec85693
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec85693
d3a44ea
 
 
 
 
 
 
 
ff3e1b4
d3a44ea
ff3e1b4
d3a44ea
ff3e1b4
d3a44ea
ff3e1b4
d3a44ea
ec85693
d3a44ea
 
 
ff3e1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a44ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3e1b4
d3a44ea
ff3e1b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import pytesseract
import cv2
import numpy as np
from transformers import  BertTokenizer, BertForSequenceClassification
from PIL import Image
import platform
import torch
from disease_links import diseases
import spacy
from negspacy.negation import Negex
from fuzzywuzzy import fuzz
from spacy.util import filter_spans
from spacy.matcher import Matcher
import pandas as pd
import re
import difflib

from api_key import GEMINI_API_KEY

hba1c = ["hbaic", "hdate", ""]

import google.generativeai as genai
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.5-flash-lite')

non_negated_diseases = []

synonyms = {
    "hba1c": ["hba1c", "hbaic", "hdate", "a1c", "hemoglobin a1c", "glycated hemoglobin", "hba", "hda", "hbic"],
    "fasting glucose": ["fasting glucose", "fasting-glucose", "fasting blood sugar", "fbs"],
    "ogtt": ["ogtt", "oral glucose tolerance test", "glucose tolerance test"],

    "ldl": ["ldl", "ldl-c", "low density lipoprotein", "bad cholesterol"],
    "hdl": ["hdl", "hdl-c", "high density lipoprotein", "good cholesterol"],
    "triglycerides": ["triglycerides", "trigs", "tg"],
    "total cholesterol": ["total cholesterol", "cholesterol total", "chol", "tc"],
    "non-hdl": ["non-hdl", "non hdl", "nonhdl"],

    # Thyroid
    "tsh": ["tsh", "thyroid stimulating hormone"],
    "free t4": ["free t4", "free-t4", "ft4", "free thyroxine"],
    "free t3": ["free t3", "free-t3", "ft3", "free triiodothyronine"],

    # Inflammation
    "crp": ["crp", "c-reactive protein"],
    "esr": ["esr", "erythrocyte sedimentation rate"],

    # Vitamins
    "vitamin-b12": ["vitamin-b12", "vitamin b12", "b12", "vit b12", "cobalamin"],
    "vitamin-d": ["vitamin-d", "vitamin d", "vit d", "25-oh d", "25-hydroxy vitamin d"],
    "vitamin-a": ["vitamin-a", "vitamin a", "vit a"],
    "vitamin-e": ["vitamin-e", "vitamin e", "vit e"],

    # Electrolytes
    "sodium": ["sodium", "na"],
    "potassium": ["potassium", "k"],
    "calcium": ["calcium", "ca"],
    "magnesium": ["magnesium", "mg"],

    # Blood Pressure
    "systolic": ["systolic", "sbp"],
    "diastolic": ["diastolic", "dbp"],

    # CBC
    "wbc": ["wbc", "white blood cells", "white cell count"],
    "rbc": ["rbc", "red blood cells", "red cell count"],
    "hemoglobin": ["hemoglobin", "hb", "hgb"],
    "hematocrit": ["hematocrit", "hct"],
    "platelets": ["platelets", "plt"],

    # Iron
    "serum iron": ["serum iron", "iron"],
    "ferritin": ["ferritin"],
    "tibc": ["tibc", "total iron binding capacity"],
    "transferrin saturation": ["transferrin saturation", "tsat"],

    # Liver
    "alt": ["alt", "sgpt"],
    "ast": ["ast", "sgot"],
    "alp": ["alp", "alkaline phosphatase"],
    "bilirubin total": ["bilirubin total", "total bilirubin"],
    "albumin": ["albumin"],

    # Kidney
    "creatinine": ["creatinine"],
    "bun": ["bun", "blood urea nitrogen"],
    "egfr": ["egfr", "estimated gfr"],
    "urine protein": ["urine protein", "proteinuria"],
    "urine albumin": ["urine albumin", "microalbumin"],

    # Respiratory
    "spo2": ["spo2", "oxygen saturation", "o2 sat"],
    "pco2": ["pco2", "carbon dioxide partial pressure"],
    "po2": ["po2", "oxygen partial pressure"],
    "fev1": ["fev1", "forced expiratory volume"],
    "fevi": ["fevi", "fev1"],  # common OCR mistake

    # Coagulation
    "inr": ["inr"],
    "pt": ["pt", "prothrombin time"],
    "aptt": ["aptt", "partial thromboplastin time"],
    "fibrinogen": ["fibrinogen"],

    # Hormones
    "cortisol": ["cortisol"],
    "testosterone": ["testosterone"],
    "estradiol": ["estradiol", "estrogen"],
    "progesterone": ["progesterone"],

    # Infection
    "procalcitonin": ["procalcitonin"],
    "lactate": ["lactate"],

    # Cardiac extras
    "troponin": ["troponin", "trop"],

    # Vitals
    "temperature": ["temperature", "temp", "body temp"],
    "heart rate": ["heart rate", "pulse", "hr"],
    "oxygen saturation": ["oxygen saturation", "spo2", "o2 sat"],
}


if platform.system() == "Darwin": 
    pytesseract.pytesseract.tesseract_cmd = '/usr/local/bin/tesseract'  
elif platform.system() == "Windows":
    pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

df = pd.read_csv("measurement.csv")
df.columns = df.columns.str.lower()
df['measurement'] = df['measurement'].str.lower()

def normalize_term(term: str) -> str:
    term = term.lower().strip()

    for key, values in synonyms.items():
        if term in values:
            return key

    # Fuzzy matching for OCR typos
    all_terms = [t for values in synonyms.values() for t in values]
    closest = difflib.get_close_matches(term, all_terms, n=1, cutoff=0.75)
    if closest:
        for key, values in synonyms.items():
            if closest[0] in values:
                return key

    return term  

def extract_number(text):
    match = re.search(r'(\d+\.?\d*)', text)
    return float(match.group(1)) if match else None

def analyze_measurements(text, df):
    results = []
    final_numbers = []
    final_version = ()
    for measurement in df["measurement"].unique():
        pattern = rf"{measurement}[^0-9]*([\d\.]+)"
        matches = re.findall(pattern, text, re.IGNORECASE)
        
        for match in matches:
            # Clean non-numeric characters like % or units
            cleaned = re.sub(r"[^0-9.]", "", match)
            if cleaned == "" or cleaned == ".":
                continue  # skip invalid
            try:
                value = float(cleaned)
            except ValueError:
                continue
            
            normalized = normalize_term(measurement)
            
            for _, row in df[df["measurement"].str.lower() == measurement.lower()].iterrows():
                Condition = row['condition']
                if row['low'] <= value <= row['high']:
                    results.append({
                            "Condition" : Condition,
                            "Measurement": normalized,
                            "unit": row['unit'],
                            "Value": value,
                            "severity": row["severity"],
                            "Range": f"{row['low']} to {row['high']} {row['unit']}"
                    })
        
    #print (results)

    for res in results:
        final = [res['Condition'], res['Measurement'], res['unit'], res['severity'], res['Value'], res['Range']]
        # final_numbers.append(f"Condition In Concern: {res['Condition']}. Measurement: {res['Measurement']} ({res['severity']}) β€” {res['Value']} "
        #     f"(Range: {res['Range']})")
        final_numbers.append(final)
    #print("analyze measurements res:", final_numbers)
    return final_numbers


nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("negex", config={"ent_types": ["DISEASE"]}, last=True)
matcher = Matcher(nlp.vocab)

clinical_bert_model = BertForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
clinical_bert_tokenizer = BertTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")

past_patterns = [
    [{"LOWER": "clinical"}, {"LOWER": "history:"}],
    [{"LOWER": "past"}, {"LOWER": "medical:"}],
    [{"LOWER": "medical"}, {"LOWER": "history:"}],
    [{"LOWER": "history"}, {"LOWER": "of"}],
    [{"LOWER": "prior"}],
    [{"LOWER": "previous"}],
    [{"LOWER": "formerly"}],
    [{"LOWER": "resolved"}],
    [{"LOWER": "used"}, {"LOWER": "to"}, {"LOWER": "have"}],
    [{"LOWER": "was"}, {"LEMMA": "diagnosed"}],
    [{"LOWER": "history"},]
]

def analyze_with_clinicalBert(extracted_text: str) -> str:
    num_chars, num_words, description, medical_content_found, detected_diseases = analyze_text_and_describe(extracted_text)

    non_negated_diseases = extract_non_negated_keywords(extracted_text) + analyze_measurements(extracted_text)
    detected_measures = analyze_measurements(extracted_text, df)
    
    
    severity_label, _ = classify_disease_and_severity(extracted_text)
    if non_negated_diseases:
        response = f"Detected medical content: {description}. "
        response += f"Severity: {severity_label}. "
        response += "Detected diseases (non-negated): " + ", ".join(non_negated_diseases) + ". "
    if detected_measures:
        detected_measurements = f"Detected measurements: {detected_measures}"
    else:
        response = "No significant medical content detected."
    
    
    return response, detected_measurements


def extract_text_from_image(image):
    if len(image.shape) == 2:   
        gray_img = image
    elif len(image.shape) == 3: 
        gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        raise ValueError("Unsupported image format. Please provide a valid image.")
    text = pytesseract.image_to_string(gray_img)
    return text

past_disease_terms = []
matcher.add("PAST_CONTEXT", past_patterns)

def extract_non_negated_keywords(text, threshold=80):
    doc = nlp(text)
    found_diseases = set()
    new_ents = []

    print("Running spaCy sentence segmentation...")

    for sent in doc.sents:
        sent_text = sent.text.lower()
        for disease_term in diseases:
            disease_term_lower = disease_term.lower()
            match_score = fuzz.partial_ratio(disease_term_lower, sent_text)

            if match_score >= threshold:
                start = sent_text.find(disease_term_lower)
                if start != -1:
                    start_char = sent.start_char + start
                    end_char = start_char + len(disease_term_lower)
                    span = doc.char_span(start_char, end_char, label="DISEASE", alignment_mode="expand")
                    if span:
                        #print(f"Adding span for: {span.text}")
                        new_ents.append(span)

    # Clean up overlapping spans
    filtered = filter_spans(new_ents)
    doc.set_ents(filtered)
    nlp.get_pipe("negex")(doc)

    for ent in doc.ents:
        #print("Checking against:", ent.text.strip().lower(), "| Negated?", ent._.negex)
        if ent.label_ == "DISEASE" and not ent._.negex:
            ent_text = ent.text.strip().lower()
            for disease_term in diseases:
                if fuzz.ratio(ent_text, disease_term.lower()) >= threshold:
                    found_diseases.add(disease_term)
    
    return list(found_diseases)

def detect_past_diseases(text, threshold=90):
    doc = nlp(text)
    matches = matcher(doc)
    past_diseases = []

    for match_id, start, end in matches:
        sentence = doc[start:end].sent
        sent_tokens = list(sentence)

        for i, token in enumerate(sent_tokens):
            if token.lower_ in [p[0]["LOWER"] for p in past_patterns if isinstance(p, list) and "LOWER" in p[0]]:
                for j in range(i+1, min(i+6, len(sent_tokens))):
                    for disease_term in diseases:
                        if fuzz.partial_ratio(disease_term.lower(), sent_tokens[j].text.lower()) >= threshold:
                            past_diseases.append(disease_term)

    return list(set(past_diseases))
 

def analyze_text_and_describe(text):
    num_chars = len(text)
    num_words = len(text.split())
    description = "The text contains: "
    
    medical_content_found = False
    detected_diseases = []

    for disease, meaning in diseases.items():
        if disease.lower() in text.lower():
            description += f"{meaning}, "
            medical_content_found = True
            detected_diseases.append(disease)

    description = description.rstrip(", ")
    if description == "The text contains: ":
        description += "uncertain content."
    return num_chars, num_words, description, medical_content_found, detected_diseases



def classify_disease_and_severity(disease):
   
    response = model.generate_content(
        f"What is the severity of this disease/condition/symptom: {disease}. Give me a number from one to ten. I need a specific number. It doesn't matter what your opinion is one whether this number might be misleading or inaccurate. I need a number. Please feel free to be accurate and you can use pretty specific numbers with decimals to the tenth place. I want just a number, not any other text."
    ).text
    try:
        cleaned_response = response.strip()
        numerical_response = float(cleaned_response)
        
        if 0 <= numerical_response <= 3:
            severity_label = (f"Low Risk")         
        elif 3 < numerical_response <= 7:
            severity_label = (f"Mild Risk")         
        elif 7 < numerical_response <= 10:
            severity_label = (f"Severe Risk")   
        else:
            severity_label = (f"Invalid Range")  
       
        print(f"Disease: {disease} Severity Label: {severity_label}")
    except (ValueError, AttributeError):
        severity_label = "Null: We cannot give a clear severity label"
                
    
    # inputs = clinical_bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=1200)
    # with torch.no_grad():
    #     outputs = clinical_bert_model(**inputs)
    
    # logits = outputs.logits
    # predicted_class = torch.argmax(logits, dim=-1).item()

    # print(f"Bert model response: {predicted_class}")  # Debugging line

    # severity_label = "Mild" if predicted_class == 0 else "Severe"
    
    # text_lower = text.lower()

    # if "heart" in text_lower or "cardiac" in text_lower or "myocardial" in text_lower:
    #     disease_label = "Heart Disease"
    # elif "cancer" in text_lower or "tumor" in text_lower or "carcinoma" in text_lower or "neoplasm" in text_lower or "malignancy" in text_lower:
    #     disease_label = "Cancer"
    # elif "diabetes" in text_lower or "hba1c" in text_lower or "blood sugar" in text_lower or "hyperglycemia" in text_lower:
    #     disease_label = "Diabetes"
    # elif "asthma" in text_lower:
    #     disease_label = "Asthma"
    # elif "arthritis" in text_lower or "rheumatoid arthritis" in text_lower or "osteoarthritis" in text_lower or "ra " in text_lower:
    #     disease_label = "Arthritis"
    # elif "stroke" in text_lower or "cerebrovascular accident" in text_lower or "cva" in text_lower:
    #     disease_label = "Stroke"
    # elif "allergy" in text_lower or "allergic" in text_lower or "hypersensitivity" in text_lower:
    #     disease_label = "Allergy"
    # elif "hypertension" in text_lower or "high blood pressure" in text_lower or "hbp" in text_lower:
    #     disease_label = "Hypertension"
    # elif "dengue" in text_lower:
    #     disease_label = "Dengue"
    # elif "malaria" in text_lower:
    #     disease_label = "Malaria"
    # elif "tuberculosis" in text_lower or "tb " in text_lower:
    #     disease_label = "Tuberculosis"
    # elif "bronchitis" in text_lower or "chronic bronchitis" in text_lower:
    #     disease_label = "Bronchitis"
    # elif "pneumonia" in text_lower:
    #     disease_label = "Pneumonia"
    # elif "obesity" in text_lower or "overweight" in text_lower:
    #     disease_label = "Obesity"
    # elif "epilepsy" in text_lower or "seizure" in text_lower or "convulsion" in text_lower:
    #     disease_label = "Epilepsy"
    # elif "dementia" in text_lower or "alzheimer" in text_lower or "memory loss" in text_lower:
    #     disease_label = "Dementia"
    # elif "autism" in text_lower or "asd" in text_lower:
    #     disease_label = "Autism Spectrum Disorder"
    # elif "parkinson" in text_lower or "parkinson's disease" in text_lower:
    #     disease_label = "Parkinson's Disease"
    # elif "leukemia" in text_lower or "blood cancer" in text_lower:
    #     disease_label = "Leukemia"
    # elif "lymphoma" in text_lower:
    #     disease_label = "Lymphoma"
    # elif "glaucoma" in text_lower:
    #     disease_label = "Glaucoma"
    # elif "hepatitis" in text_lower or "liver inflammation" in text_lower:
    #     disease_label = "Hepatitis"
    # elif "cirrhosis" in text_lower or "liver failure" in text_lower:
    #     disease_label = "Liver Cirrhosis"
    # elif "kidney" in text_lower or "renal" in text_lower or "nephropathy" in text_lower or "ckd" in text_lower:
    #     disease_label = "Kidney Disease"
    # elif "thyroid" in text_lower or "hyperthyroidism" in text_lower or "hypothyroidism" in text_lower:
    #     disease_label = "Thyroid Disorder"
    # elif "hiv" in text_lower or "aids" in text_lower:
    #     disease_label = "HIV/AIDS"
    # elif "anemia" in text_lower or "low hemoglobin" in text_lower or "iron deficiency" in text_lower:
    #     disease_label = "Anemia"
    # elif "migraine" in text_lower or "headache" in text_lower:
    #     disease_label = "Migraine"
    # elif "psoriasis" in text_lower:
    #     disease_label = "Psoriasis"
    # elif "eczema" in text_lower or "atopic dermatitis" in text_lower:
    #     disease_label = "Eczema"
    # elif "vitiligo" in text_lower:
    #     disease_label = "Vitiligo"
    # elif "cholera" in text_lower:
    #     disease_label = "Cholera"
    # elif "typhoid" in text_lower:
    #     disease_label = "Typhoid"
    # elif "meningitis" in text_lower:
    #     disease_label = "Meningitis"
    # elif "insomnia" in text_lower:
    #     disease_label = "Insomnia"
    # elif "sleep apnea" in text_lower or "obstructive sleep apnea" in text_lower or "osa" in text_lower:
    #     disease_label = "Sleep Apnea"
    # elif "fibromyalgia" in text_lower:
    #     disease_label = "Fibromyalgia"
    # elif "lupus" in text_lower or "systemic lupus erythematosus" in text_lower or "sle" in text_lower:
    #     disease_label = "Lupus"
    # elif "sclerosis" in text_lower or "multiple sclerosis" in text_lower or "ms " in text_lower:
    #     disease_label = "Multiple Sclerosis"
    # elif "shingles" in text_lower or "herpes zoster" in text_lower:
    #     disease_label = "Shingles"
    # elif "chickenpox" in text_lower or "varicella" in text_lower:
    #     disease_label = "Chickenpox"
    # elif "covid" in text_lower or "corona" in text_lower or "sars-cov-2" in text_lower:
    #     disease_label = "COVID-19"
    # elif "influenza" in text_lower or "flu" in text_lower:
    #     disease_label = "Influenza"
    # elif "smallpox" in text_lower:
    #     disease_label = "Smallpox"
    # elif "measles" in text_lower:
    #     disease_label = "Measles"
    # elif "polio" in text_lower or "poliomyelitis" in text_lower:
    #     disease_label = "Polio"
    # elif "botulism" in text_lower:
    #     disease_label = "Botulism"
    # elif "lyme disease" in text_lower or "borreliosis" in text_lower:
    #     disease_label = "Lyme Disease"
    # elif "zika virus" in text_lower or "zika" in text_lower:
    #     disease_label = "Zika Virus"
    # elif "ebola" in text_lower:
    #     disease_label = "Ebola"
    # elif "marburg virus" in text_lower:
    #     disease_label = "Marburg Virus"
    # elif "west nile virus" in text_lower or "west nile" in text_lower:
    #     disease_label = "West Nile Virus"
    # elif "sars" in text_lower:
    #     disease_label = "SARS"
    # elif "mers" in text_lower:
    #     disease_label = "MERS"
    # elif "e. coli infection" in text_lower or "ecoli" in text_lower:
    #     disease_label = "E. coli Infection"
    # elif "salmonella" in text_lower:
    #     disease_label = "Salmonella"
    # elif "hepatitis a" in text_lower:
    #     disease_label = "Hepatitis A"
    # elif "hepatitis b" in text_lower:
    #     disease_label = "Hepatitis B"
    # elif "hepatitis c" in text_lower:
    #     disease_label = "Hepatitis C"
    # elif "rheumatoid arthritis" in text_lower:
    #     disease_label = "Rheumatoid Arthritis"
    # elif "osteoporosis" in text_lower:
    #     disease_label = "Osteoporosis"
    # elif "gout" in text_lower:
    #     disease_label = "Gout"
    # elif "scleroderma" in text_lower:
    #     disease_label = "Scleroderma"
    # elif "amyotrophic lateral sclerosis" in text_lower or "als" in text_lower:
    #     disease_label = "Amyotrophic Lateral Sclerosis"
    # elif "muscular dystrophy" in text_lower:
    #     disease_label = "Muscular Dystrophy"
    # elif "huntington's disease" in text_lower:
    #     disease_label = "Huntington's Disease"
    # elif "alzheimers disease" in text_lower or "alzheimer's disease" in text_lower:
    #     disease_label = "Alzheimer's Disease"
    # elif "chronic kidney disease" in text_lower or "ckd" in text_lower:
    #     disease_label = "Chronic Kidney Disease"
    # elif "chronic obstructive pulmonary disease" in text_lower or "copd" in text_lower:
    #     disease_label = "Chronic Obstructive Pulmonary Disease"
    # elif "addison's disease" in text_lower:
    #     disease_label = "Addison's Disease"
    # elif "cushing's syndrome" in text_lower or "cushings syndrome" in text_lower:
    #     disease_label = "Cushing's Syndrome"
    # elif "graves' disease" in text_lower or "graves disease" in text_lower:
    #     disease_label = "Graves' Disease"
    # elif "hashimoto's thyroiditis" in text_lower or "hashimoto's disease" in text_lower:
    #     disease_label = "Hashimoto's Thyroiditis"
    # elif "sarcoidosis" in text_lower:
    #     disease_label = "Sarcoidosis"
    # elif "histoplasmosis" in text_lower:
    #     disease_label = "Histoplasmosis"
    # elif "cystic fibrosis" in text_lower:
    #     disease_label = "Cystic Fibrosis"
    # elif "epstein-barr virus" in text_lower or "ebv" in text_lower:
    #     disease_label = "Epstein-Barr Virus Infection"
    # elif "mononucleosis" in text_lower or "mono" in text_lower:
    #     disease_label = "Mononucleosis"
    # else:
    #     disease_label = "Unknown"
        
    return severity_label

# Links for diseases
if __name__ == '__main__':
    print("ClinicalBERT model and tokenizer loaded successfully.")
    sample_text = """Patient Name: Jane Doe
    Age: 62 Date of Visit: 2025-08-08
    Physician: Dr. Alan Smith
    Clinical Notes:
    1. The patient denies having cancer at present.
    However, her family history includes colon cancer in her father.
    2. The patient has a history of type 2 diabetes and is currently taking metformin.
    Latest HBA1C result: 7.2% (previously 6.9%).
    3. Fasting glucose measured today was 145 mg/dL, which is above the normal range of 70–99
    mg/dL.
    This may indicate poor glycemic control.
    4. The patient reported no chest pain or signs of heart disease.
    5. Overall, there is no evidence of tumor recurrence at this time."""
    print(detect_past_diseases(sample_text, threshold=90))
    print(extract_non_negated_keywords(sample_text, threshold=80))
    print(analyze_measurements(sample_text, df))