File size: 4,193 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# /// script
# dependencies = [
#     "trl @ git+https://github.com/huggingface/trl.git",
#     "peft",
# ]
# ///

"""
Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to
that of DPO.

# Full training:
```bash
python trl/scripts/kto.py \
    --dataset_name trl-lib/kto-mix-14k \
    --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
    --per_device_train_batch_size 16 \
    --num_train_epochs 1 \
    --learning_rate 5e-7 \
    --lr_scheduler_type=cosine \
    --gradient_accumulation_steps 1 \
    --eval_steps 500 \
    --output_dir=kto-aligned-model \
    --warmup_ratio 0.1 \
    --report_to wandb \
    --logging_first_step
```

# QLoRA:
```bash
# QLoRA:
python trl/scripts/kto.py \
    --dataset_name trl-lib/kto-mix-14k \
    --model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
    --per_device_train_batch_size 8 \
    --num_train_epochs 1 \
    --learning_rate 5e-7 \
    --lr_scheduler_type=cosine \
    --gradient_accumulation_steps 1 \
    --eval_steps 500 \
    --output_dir=kto-aligned-model-lora \
    --warmup_ratio 0.1 \
    --report_to wandb \
    --logging_first_step \
    --use_peft \
    --load_in_4bit \
    --lora_target_modules=all-linear \
    --lora_r=16 \
    --lora_alpha=16
```
"""

import argparse

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from trl import (
    KTOConfig,
    KTOTrainer,
    ModelConfig,
    ScriptArguments,
    TrlParser,
    get_peft_config,
    setup_chat_format,
)


def main(script_args, training_args, model_args):
    # Load a pretrained model
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    ref_model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    # If we are aligning a base model, we use ChatML as the default template
    if tokenizer.chat_template is None:
        model, tokenizer = setup_chat_format(model, tokenizer)

    # Load the dataset
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    # Initialize the KTO trainer
    trainer = KTOTrainer(
        model,
        ref_model,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
    )

    # Train and push the model to the Hub
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (ScriptArguments, KTOConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("kto", help="Run the KTO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    main(script_args, training_args, model_args)