Spaces:
Paused
Paused
File size: 12,773 Bytes
a080fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class SFTConfig(TrainingArguments):
r"""
Configuration class for the [`SFTTrainer`].
This class includes only the parameters that are specific to SFT training. For a full list of training arguments,
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`SFTTrainer`] is provided as a string.
chat_template_path (`str` or `None`, *optional*, defaults to `None`):
If specified, sets the model's chat template. This can either be the path to a tokenizer (local directory
or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, you must
ensure that any special tokens referenced in the template are added to the tokenizer and that the model's
embedding layer is resized accordingly.
> Parameters that control the data preprocessing
dataset_text_field (`str`, *optional*, defaults to `"text"`):
Name of the column that contains text data in the dataset.
dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
`skip_prepare_dataset`.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
eos_token (`str` or `None`, *optional*, defaults to `None`):
Token used to indicate the end of a turn or sequence. If `None`, it defaults to
`processing_class.eos_token`.
pad_token (`int` or `None`, *optional*, defaults to `None`):
Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`,
it falls back to `processing_class.eos_token`.
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from the right.
If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
packing (`bool`, *optional*, defaults to `False`):
Whether to group multiple sequences into fixed-length blocks to improve computational efficiency and reduce
padding. Uses `max_length` to define sequence length.
packing_strategy (`str`, *optional*, defaults to `"bfd"`):
Strategy for packing sequences. Can be either `"bfd"` (best-fit decreasing, default), or `"wrapped"`.
padding_free (`bool`, *optional*, defaults to `False`):
Whether to perform forward passes without padding by flattening all sequences in the batch into a single
continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only
supported with the FlashAttention 2 or 3, which can efficiently handle the flattened batch structure. When
packing is enabled with strategy `"bfd"`, padding-free is enabled, regardless of the value of this
parameter.
pad_to_multiple_of (`int` or `None`, *optional*, defaults to `None`):
If set, the sequences will be padded to a multiple of this value.
eval_packing (`bool` or `None`, *optional*, defaults to `None`):
Whether to pack the eval dataset. If `None`, uses the same value as `packing`.
> Parameters that control the training
completion_only_loss (`bool` or `None`, *optional*, defaults to `None`):
Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is computed
only on the completion, which is supported only for [prompt-completion](#prompt-completion) datasets. If
`False`, loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset:
loss is computed on the completion for [prompt-completion](#prompt-completion) datasets, and on the full
sequence for [language modeling](#language-modeling) datasets.
assistant_only_loss (`bool`, *optional*, defaults to `False`):
Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is computed
only on the assistant responses, which is supported only for [conversational](#conversational) datasets. If `False`,
loss is computed on the entire sequence.
activation_offloading (`bool`, *optional*, defaults to `False`):
Whether to offload the activations to the CPU.
"""
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs"]
# Parameters whose default values are overridden from TrainingArguments
learning_rate: float = field(
default=2e-5,
metadata={"help": "The initial learning rate for AdamW."},
)
logging_steps: float = field(
default=10,
metadata={
"help": "Log every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, "
"will be interpreted as ratio of total training steps."
},
)
bf16: Optional[bool] = field(
default=None,
metadata={
"help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
"architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if "
"`fp16` is not set."
},
)
# Note: In transformers>=4.54.0, `average_tokens_across_devices` defaults to True. Overriding this setting is only
# needed for earlier versions. Once we require transformers>=4.54.0, this line can be safely removed.
# See https://github.com/huggingface/transformers/pull/39395
average_tokens_across_devices: bool = field(
default=True,
metadata={
"help": "Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize "
"num_tokens_in_batch for precise loss calculation. Reference: https://github.com/huggingface/transformers/issues/34242 "
},
)
# Parameters that control the model
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of "
"the `SFTTrainer` is provided as a string."
},
)
chat_template_path: Optional[str] = field(
default=None,
metadata={
"help": "If specified, sets the model's chat template. This can either be the path to a tokenizer (local "
"directory or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, "
"you must ensure that any special tokens referenced in the template are added to the tokenizer and "
"that the model's embedding layer is resized accordingly."
},
)
# Parameters that control the data preprocessing
dataset_text_field: str = field(
default="text",
metadata={"help": "Name of the column that contains text data in the dataset."},
)
dataset_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Dictionary of optional keyword arguments for the dataset preparation. The only supported key is "
"`skip_prepare_dataset`."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
eos_token: Optional[str] = field(
default=None,
metadata={
"help": "Token used to indicate the end of a turn or sequence. If `None`, it defaults to `processing_class.eos_token`."
},
)
pad_token: Optional[str] = field(
default=None,
metadata={
"help": "Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that "
"is also `None`, it falls back to `processing_class.eos_token`."
},
)
max_length: Optional[int] = field(
default=1024,
metadata={
"help": "Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from"
"the right. If `None`, no truncation is applied. When packing is enabled, this value sets the "
"sequence length."
},
)
packing: bool = field(
default=False,
metadata={
"help": "Whether to group multiple sequences into fixed-length blocks to improve computational efficiency "
"and reduce padding. Uses `max_length` to define sequence length."
},
)
packing_strategy: str = field(
default="bfd",
metadata={
"help": "Strategy for packing sequences. Can be either `'bfd'` (best-fit decreasing, default), or "
"`'wrapped'`."
},
)
padding_free: bool = field(
default=False,
metadata={
"help": "Whether to perform forward passes without padding by flattening all sequences in the batch into "
"a single continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this "
"is only supported with the FlashAttention 2 or 3, which can efficiently handle the flattened batch "
"structure. When packing is enabled with strategy `'bfd'`, padding-free is enabled, regardless of the "
"value of this parameter."
},
)
pad_to_multiple_of: Optional[int] = field(
default=None,
metadata={"help": "If set, the sequences will be padded to a multiple of this value."},
)
eval_packing: Optional[bool] = field(
default=None,
metadata={"help": "Whether to pack the eval dataset. If `None`, uses the same value as `packing`."},
)
# Parameters that control the training
completion_only_loss: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is "
"computed only on the completion, which is supported only for prompt-completion datasets. If `False`, "
"loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset: "
"loss is computed on the completion for prompt-completion datasets, and on the full sequence for "
"language modeling datasets."
)
},
)
assistant_only_loss: bool = field(
default=False,
metadata={
"help": (
"Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is "
"computed only on the assistant responses, which is supported only for conversational datasets. If `False`, "
"loss is computed on the entire sequence."
)
},
)
activation_offloading: bool = field(
default=False,
metadata={"help": "Whether to offload the activations to the CPU."},
)
def __post_init__(self):
self.bf16 = not (self.fp16) if self.bf16 is None else self.bf16
super().__post_init__()
|