File size: 12,773 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass, field
from typing import Any, Optional

from transformers import TrainingArguments


@dataclass
class SFTConfig(TrainingArguments):
    r"""
    Configuration class for the [`SFTTrainer`].

    This class includes only the parameters that are specific to SFT training. For a full list of training arguments,
    please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
    differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        > Parameters that control the model

        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
            argument of the [`SFTTrainer`] is provided as a string.
        chat_template_path (`str` or `None`, *optional*, defaults to `None`):
            If specified, sets the model's chat template. This can either be the path to a tokenizer (local directory
            or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, you must
            ensure that any special tokens referenced in the template are added to the tokenizer and that the model's
            embedding layer is resized accordingly.

        > Parameters that control the data preprocessing

        dataset_text_field (`str`, *optional*, defaults to `"text"`):
            Name of the column that contains text data in the dataset.
        dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
            `skip_prepare_dataset`.
        dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        eos_token (`str` or `None`, *optional*, defaults to `None`):
            Token used to indicate the end of a turn or sequence. If `None`, it defaults to
            `processing_class.eos_token`.
        pad_token (`int` or `None`, *optional*, defaults to `None`):
            Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`,
            it falls back to `processing_class.eos_token`.
        max_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from the right.
            If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
        packing (`bool`, *optional*, defaults to `False`):
            Whether to group multiple sequences into fixed-length blocks to improve computational efficiency and reduce
            padding. Uses `max_length` to define sequence length.
        packing_strategy (`str`, *optional*, defaults to `"bfd"`):
            Strategy for packing sequences. Can be either `"bfd"` (best-fit decreasing, default), or `"wrapped"`.
        padding_free (`bool`, *optional*, defaults to `False`):
            Whether to perform forward passes without padding by flattening all sequences in the batch into a single
            continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only
            supported with the FlashAttention 2 or 3, which can efficiently handle the flattened batch structure. When
            packing is enabled with strategy `"bfd"`, padding-free is enabled, regardless of the value of this
            parameter.
        pad_to_multiple_of (`int` or `None`, *optional*, defaults to `None`):
            If set, the sequences will be padded to a multiple of this value.
        eval_packing (`bool` or `None`, *optional*, defaults to `None`):
            Whether to pack the eval dataset. If `None`, uses the same value as `packing`.

        > Parameters that control the training

        completion_only_loss (`bool` or `None`, *optional*, defaults to `None`):
            Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is computed
            only on the completion, which is supported only for [prompt-completion](#prompt-completion) datasets. If
            `False`, loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset:
            loss is computed on the completion for [prompt-completion](#prompt-completion) datasets, and on the full
            sequence for [language modeling](#language-modeling) datasets.
        assistant_only_loss (`bool`, *optional*, defaults to `False`):
            Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is computed
            only on the assistant responses, which is supported only for [conversational](#conversational) datasets. If `False`,
            loss is computed on the entire sequence.
        activation_offloading (`bool`, *optional*, defaults to `False`):
            Whether to offload the activations to the CPU.
    """

    _VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs"]

    # Parameters whose default values are overridden from TrainingArguments
    learning_rate: float = field(
        default=2e-5,
        metadata={"help": "The initial learning rate for AdamW."},
    )
    logging_steps: float = field(
        default=10,
        metadata={
            "help": "Log every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, "
            "will be interpreted as ratio of total training steps."
        },
    )
    bf16: Optional[bool] = field(
        default=None,
        metadata={
            "help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
            "architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if "
            "`fp16` is not set."
        },
    )
    # Note: In transformers>=4.54.0, `average_tokens_across_devices` defaults to True. Overriding this setting is only
    # needed for earlier versions. Once we require transformers>=4.54.0, this line can be safely removed.
    # See https://github.com/huggingface/transformers/pull/39395
    average_tokens_across_devices: bool = field(
        default=True,
        metadata={
            "help": "Whether or not to average tokens across devices. If enabled, will use all_reduce to synchronize "
            "num_tokens_in_batch for precise loss calculation. Reference: https://github.com/huggingface/transformers/issues/34242 "
        },
    )

    # Parameters that control the model
    model_init_kwargs: Optional[dict[str, Any]] = field(
        default=None,
        metadata={
            "help": "Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of "
            "the `SFTTrainer` is provided as a string."
        },
    )
    chat_template_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "If specified, sets the model's chat template. This can either be the path to a tokenizer (local "
            "directory or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, "
            "you must ensure that any special tokens referenced in the template are added to the tokenizer and "
            "that the model's embedding layer is resized accordingly."
        },
    )

    # Parameters that control the data preprocessing
    dataset_text_field: str = field(
        default="text",
        metadata={"help": "Name of the column that contains text data in the dataset."},
    )
    dataset_kwargs: Optional[dict[str, Any]] = field(
        default=None,
        metadata={
            "help": "Dictionary of optional keyword arguments for the dataset preparation. The only supported key is "
            "`skip_prepare_dataset`."
        },
    )
    dataset_num_proc: Optional[int] = field(
        default=None,
        metadata={"help": "Number of processes to use for processing the dataset."},
    )
    eos_token: Optional[str] = field(
        default=None,
        metadata={
            "help": "Token used to indicate the end of a turn or sequence. If `None`, it defaults to `processing_class.eos_token`."
        },
    )
    pad_token: Optional[str] = field(
        default=None,
        metadata={
            "help": "Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that "
            "is also `None`, it falls back to `processing_class.eos_token`."
        },
    )
    max_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from"
            "the right. If `None`, no truncation is applied. When packing is enabled, this value sets the "
            "sequence length."
        },
    )
    packing: bool = field(
        default=False,
        metadata={
            "help": "Whether to group multiple sequences into fixed-length blocks to improve computational efficiency "
            "and reduce padding. Uses `max_length` to define sequence length."
        },
    )
    packing_strategy: str = field(
        default="bfd",
        metadata={
            "help": "Strategy for packing sequences. Can be either `'bfd'` (best-fit decreasing, default), or "
            "`'wrapped'`."
        },
    )
    padding_free: bool = field(
        default=False,
        metadata={
            "help": "Whether to perform forward passes without padding by flattening all sequences in the batch into "
            "a single continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this "
            "is only supported with the FlashAttention 2 or 3, which can efficiently handle the flattened batch "
            "structure. When packing is enabled with strategy `'bfd'`, padding-free is enabled, regardless of the "
            "value of this parameter."
        },
    )
    pad_to_multiple_of: Optional[int] = field(
        default=None,
        metadata={"help": "If set, the sequences will be padded to a multiple of this value."},
    )
    eval_packing: Optional[bool] = field(
        default=None,
        metadata={"help": "Whether to pack the eval dataset. If `None`, uses the same value as `packing`."},
    )

    # Parameters that control the training
    completion_only_loss: Optional[bool] = field(
        default=None,
        metadata={
            "help": (
                "Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is "
                "computed only on the completion, which is supported only for prompt-completion datasets. If `False`, "
                "loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset: "
                "loss is computed on the completion for prompt-completion datasets, and on the full sequence for "
                "language modeling datasets."
            )
        },
    )
    assistant_only_loss: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is "
                "computed only on the assistant responses, which is supported only for conversational datasets. If `False`, "
                "loss is computed on the entire sequence."
            )
        },
    )
    activation_offloading: bool = field(
        default=False,
        metadata={"help": "Whether to offload the activations to the CPU."},
    )

    def __post_init__(self):
        self.bf16 = not (self.fp16) if self.bf16 is None else self.bf16
        super().__post_init__()