# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import textwrap from typing import Any, Callable, Optional, Union import jinja2 import torch import torch.nn as nn import torch.nn.functional as F from datasets import Dataset, IterableDataset from transformers import ( BaseImageProcessor, FeatureExtractionMixin, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, TrainerCallback, is_apex_available, is_wandb_available, ) from transformers.trainer_utils import EvalPrediction from transformers.training_args import OptimizerNames from transformers.utils import is_peft_available from ..data_utils import is_conversational, maybe_apply_chat_template from ..models.utils import unwrap_model_for_generation from .judges import BasePairwiseJudge from .online_dpo_trainer import OnlineDPOTrainer from .utils import ( SIMPLE_CHAT_TEMPLATE, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, selective_log_softmax, truncate_right, ) from .xpo_config import XPOConfig if is_apex_available(): from apex import amp if is_wandb_available(): import wandb if is_peft_available(): from peft import PeftModel class XPOTrainer(OnlineDPOTrainer): r""" Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`]. Args: model (`transformers.PreTrainedModel`): The model to train, preferably an `AutoModelForCausalLM`. ref_model (`PreTrainedModelWrapper`): Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. reward_model (`transformers.PreTrainedModel`): The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. judge (`BasePairwiseJudge`): The judge to use for pairwise comparison of model completions. args (`XPOConfig`): The XPO config arguments to use for training. data_collator (`transformers.DataCollator`): The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. train_dataset (`datasets.Dataset`): The dataset to use for training. eval_dataset (`datasets.Dataset`): The dataset to use for evaluation. processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`): Processing class used to process the data. If provided, will be used to automatically process the inputs for the model, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. peft_config (`dict`): The peft config to use for training. compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values. callbacks (`list[transformers.TrainerCallback]`): The callbacks to use for training. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): The optimizer and scheduler to use for training. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): The function to use to preprocess the logits before computing the metrics. """ _tag_names = ["trl", "xpo"] def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, ref_model: Union[PreTrainedModel, nn.Module] = None, reward_model: Optional[nn.Module] = None, judge: Optional[BasePairwiseJudge] = None, args: Optional[XPOConfig] = None, data_collator: Optional[Callable] = None, train_dataset: Optional[Union[Dataset, IterableDataset]] = None, eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ] = None, peft_config: Optional[dict] = None, compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, callbacks: Optional[list[TrainerCallback]] = None, optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, ) -> None: super().__init__( model=model, ref_model=ref_model, judge=judge, reward_model=reward_model, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class, reward_processing_class=processing_class, # for now, XPOTrainer can't use any reward model peft_config=peft_config, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) self._alpha = self.args.alpha # Overwrite the stats dictionary to include XPO specific statistics self.stats = { # Remove "non_score_reward", "rlhf_reward", "scores" # Add "loss/dpo", "loss/xpo" "loss/dpo": [], "loss/xpo": [], "objective/kl": [], "objective/entropy": [], "rewards/chosen": [], "rewards/rejected": [], "rewards/accuracies": [], "rewards/margins": [], "logps/chosen": [], "logps/rejected": [], # Replace "contain_eos_token" by "model_contain_eos_token" and "ref_contain_eos_token" "val/model_contain_eos_token": [], "val/ref_contain_eos_token": [], "alpha": [], "beta": [], } if self.reward_model is not None: # Replace "scores" by "model_scores" and "ref_scores" self.stats["objective/model_scores"] = [] self.stats["objective/ref_scores"] = [] self.stats["objective/scores_margin"] = [] @property def alpha(self): if isinstance(self._alpha, list): epoch = self.state.epoch return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1] else: return self._alpha def _generate_completions(self, prompts, model): with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_model_for_gen: model_output = unwrapped_policy_model_for_gen.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) actual_model_for_ref_generation: torch.nn.Module if self.ref_model is None: unwrapped_main_model_for_ref_logic = self.accelerator.unwrap_model(model) if is_peft_available() and isinstance(unwrapped_main_model_for_ref_logic, PeftModel): actual_model_for_ref_generation = unwrapped_main_model_for_ref_logic.get_base_model() else: actual_model_for_ref_generation = unwrapped_main_model_for_ref_logic else: actual_model_for_ref_generation = self.accelerator.unwrap_model(self.ref_model) with unwrap_model_for_generation(actual_model_for_ref_generation, self.accelerator) as final_ref_model_for_gen: ref_output = final_ref_model_for_gen.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) return model_output, ref_output def _process_completions(self, model_output, ref_output, prompts): context_length = prompts["input_ids"].shape[1] # Process model completions model_completion_ids = model_output[:, context_length:] model_completion_ids, model_completion_mask = truncate_right( model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) model_data = { "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1), "raw": prompts["raw"], } # Process reference model completions ref_completion_ids = ref_output[:, context_length:] ref_completion_ids, ref_completion_mask = truncate_right( ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) ref_data = { "input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1), "raw": prompts["raw"], } return model_data, ref_data def _compute_rewards(self, model_data, ref_data, context_length): with torch.no_grad(): _, model_scores, _ = get_reward( self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length ) _, ref_scores, _ = get_reward( self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length ) # Apply EOS penalty if needed if self.args.missing_eos_penalty is not None: model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) model_scores[~model_contain_eos] -= self.args.missing_eos_penalty ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty return model_scores, ref_scores def _compute_judge(self, model_data, ref_data, context_length): prompts = model_data["raw"] model_data_completions = self.processing_class.batch_decode( model_data["input_ids"][:, context_length:], skip_special_tokens=True ) model_data_completions = [completion.strip() for completion in model_data_completions] ref_data_completions = self.processing_class.batch_decode( ref_data["input_ids"][:, context_length:], skip_special_tokens=True ) ref_data_completions = [completion.strip() for completion in ref_data_completions] if is_conversational({"prompt": prompts[0]}): model_data_completions = [ [{"role": "assistant", "content": completion}] for completion in model_data_completions ] environment = jinja2.Environment() template = environment.from_string(SIMPLE_CHAT_TEMPLATE) prompts = [template.render(messages=message) for message in prompts] model_data_completions = [template.render(messages=completion) for completion in model_data_completions] ref_data_completions = [ [{"role": "assistant", "content": completion}] for completion in ref_data_completions ] ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions] ranks_of_first_completion = self.judge.judge( prompts, list(zip(model_data_completions, ref_data_completions)), ) # convert ranks to a True/False mask: # when rank == 0, it means the first completion is the best # when rank == 1, it means the second completion is the best return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device) def _compute_logprobs(self, model, model_data, ref_data, context_length): def compute_logprobs_for_data(m, data): output = m(data["input_ids"], attention_mask=data["attention_mask"]) logits = output.logits[:, context_length - 1 : -1] token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:]) return token_logprobs # Compute logprobs for model completions model_logprobs_model_data = compute_logprobs_for_data(model, model_data) # Compute logprobs for model on reference completions (for XPO loss) model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data) # Compute logprobs for reference model completions with torch.no_grad(): if self.ref_model is None: with model.disable_adapter(): ref_logprobs_model_data = compute_logprobs_for_data(model, model_data) ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data) else: ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data) ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data) # Mask padding tokens model_padding_mask = model_data["attention_mask"][:, context_length:] == 0 ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0 model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0) model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0) ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0) ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0) return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data def _compute_losses( self, model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data, chosen_mask, ): # Compute log probs model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1) ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1) ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs # Compute logits as the difference between chosen and rejected log ratios logits = chosen_log_ratios - rejected_log_ratios if self.args.loss_type == "sigmoid": dpo_losses = -F.logsigmoid(self.beta * logits) elif self.args.loss_type == "ipo": dpo_losses = (logits - 1 / (2 * self.beta)) ** 2 else: raise NotImplementedError(f"invalid loss type {self.args.loss_type}") # Compute XPO specific loss xpo_losses = self.alpha * model_logprobs_ref_data_sum # Total loss loss = (dpo_losses + xpo_losses).mean() return loss, dpo_losses, xpo_losses def _log_statistics( self, model_data, ref_data, model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data, chosen_mask, dpo_losses, xpo_losses, context_length, model_scores=None, ref_scores=None, ): # Helper function to gather and compute mean def gather_mean(tensor): return self.accelerator.gather_for_metrics(tensor).mean().item() # Log losses self.stats["loss/dpo"].append(gather_mean(dpo_losses)) self.stats["loss/xpo"].append(gather_mean(xpo_losses)) # Log scores if self.reward_model is not None: self.stats["objective/model_scores"].append(gather_mean(model_scores)) self.stats["objective/ref_scores"].append(gather_mean(ref_scores)) self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores)) # Log logprobs model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1) ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1) ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean())) self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean())) # Log rewards # Compute various statistics chosen_rewards = chosen_log_ratios * self.beta rejected_rewards = rejected_log_ratios * self.beta self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean())) self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean())) # Calculate KL divergence for model and ref data kl_model_data = model_logprobs_model_data - ref_logprobs_model_data kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2 self.stats["objective/kl"].append(gather_mean(mean_kl)) # Calculate entropy for model and ref data entropy_model_data = -model_logprobs_model_data.sum(1) entropy_ref_data = -model_logprobs_ref_data.sum(1) mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2 self.stats["objective/entropy"].append(gather_mean(mean_entropy)) # Calculate margins margin = chosen_rewards - rejected_rewards self.stats["rewards/margins"].append(gather_mean(margin.mean())) # Calculate accuracy accuracy = (margin > 0).float() self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean())) # Log EOS token statistics model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float())) self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float())) # Log alpha and beta self.stats["alpha"].append(self.alpha) self.stats["beta"].append(self.beta) def training_step( self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None ) -> torch.Tensor: model.train() # Apply chat template and tokenize the input batch_size = len(next(iter(inputs.values()))) prompts = inputs["prompt"] inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)] inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs] inputs = self.data_collator(inputs) # need the prompt_ only inputs = self._prepare_inputs(inputs) context_length = inputs["prompt_input_ids"].shape[1] prompts = { "input_ids": inputs["prompt_input_ids"], "attention_mask": inputs["prompt_attention_mask"], "raw": prompts, } del inputs # Sample completions from both the model and the reference model model_output, ref_output = self._generate_completions(prompts, model) # Process model completions model_data, ref_data = self._process_completions(model_output, ref_output, prompts) # Compute rewards if self.reward_model is not None: model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length) chosen_mask = model_scores >= ref_scores else: model_scores, ref_scores = None, None chosen_mask = self._compute_judge(model_data, ref_data, context_length) # Compute logprobs model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = ( self._compute_logprobs(model, model_data, ref_data, context_length) ) # Compute loss loss, dpo_losses, xpo_losses = self._compute_losses( model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data, chosen_mask, ) # Log everything self._log_statistics( model_data, ref_data, model_logprobs_model_data.detach(), model_logprobs_ref_data.detach(), ref_logprobs_ref_data, ref_logprobs_model_data, chosen_mask, dpo_losses.detach(), xpo_losses.detach(), context_length, model_scores, ref_scores, ) if ( self.args.torch_empty_cache_steps is not None and self.state.global_step % self.args.torch_empty_cache_steps == 0 ): empty_cache() kwargs = {} # For LOMO optimizers you need to explicitly use the learning rate if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: kwargs["learning_rate"] = self._get_learning_rate() if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: self.accelerator.backward(loss, **kwargs) return loss.detach() / self.args.gradient_accumulation_steps def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None # normalize `tags` to a mutable set if tags is None: tags = set() elif isinstance(tags, str): tags = {tags} else: tags = set(tags) if hasattr(self.model.config, "unsloth_version"): tags.add("unsloth") tags.update(self._tag_names) citation = textwrap.dedent("""\ @article{jung2024binary, title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}}, author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin}, year = 2024, eprint = {arXiv:2405.21046} }""") model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="XPO", trainer_citation=citation, paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF", paper_id="2405.21046", ) model_card.save(os.path.join(self.args.output_dir, "README.md"))