Spaces:
Sleeping
Sleeping
File size: 19,455 Bytes
9f7b3b1 e08c2ce b4ff22b e08c2ce b4ff22b 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 b4ff22b 9f7b3b1 b4ff22b 9f7b3b1 e08c2ce 9bde168 e08c2ce 9bde168 e08c2ce 9f7b3b1 9bde168 9f7b3b1 e08c2ce 9bde168 e08c2ce 9bde168 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9bde168 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 9bde168 e08c2ce b4ff22b 9bde168 9f7b3b1 d29abcc 9bde168 9f7b3b1 9bde168 e08c2ce 9bde168 b4ff22b 9bde168 442d831 9bde168 442d831 9bde168 9f7b3b1 9bde168 9f7b3b1 9bde168 442d831 9f7b3b1 9bde168 e08c2ce 9bde168 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 b4ff22b e08c2ce 9f7b3b1 e08c2ce b4ff22b 9f7b3b1 e08c2ce 9f7b3b1 9bde168 9f7b3b1 9bde168 e08c2ce 9bde168 e08c2ce 9f7b3b1 e08c2ce 9bde168 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 e08c2ce 9f7b3b1 9bde168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import os
from datetime import datetime
import plotly.graph_objects as go
import warnings
warnings.filterwarnings('ignore')
# Try to import the PropertyValuePredictor class
try:
from train_model import PropertyValuePredictor
print("โ
Successfully imported PropertyValuePredictor from train_model")
except ImportError as e:
print(f"โ Import error: {e}")
# Fallback: create a simple predictor class
class PropertyValuePredictor:
def __init__(self):
self.model = None
self.scaler = None
self.feature_columns = None
self.label_encoders = {}
def load_model(self, model_path):
try:
if os.path.exists(model_path):
model_data = joblib.load(model_path)
self.model = model_data['model']
self.scaler = model_data['scaler']
self.feature_columns = model_data['feature_columns']
self.label_encoders = model_data.get('label_encoders', {})
print(f"โ
Model loaded from {model_path}")
return True
else:
print(f"โ Model file {model_path} not found")
return False
except Exception as e:
print(f"โ Error loading model: {e}")
return False
def predict_future_value(self, property_data):
if self.model is None:
return {"error": "Model not loaded"}
try:
# Convert to DataFrame
if isinstance(property_data, dict):
df = pd.DataFrame([property_data])
else:
df = property_data.copy()
# Feature engineering
df['property_age'] = 2025 - df['year_built']
df['price_per_sqft'] = df['current_value'] / df['square_feet']
df['value_per_bedroom'] = df['current_value'] / df['bedrooms'].replace(0, 1)
# Encode categorical features
for col, encoder in self.label_encoders.items():
if col.replace('_encoded', '') in df.columns:
original_col = col.replace('_encoded', '')
try:
df[col] = encoder.transform(df[original_col].astype(str))
except:
df[col] = 0
# Select features
if self.feature_columns:
# Ensure all features exist
for col in self.feature_columns:
if col not in df.columns:
df[col] = 0
X = df[self.feature_columns]
else:
# Use available numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
X = df[numeric_cols]
# Scale features
if self.scaler:
X_scaled = self.scaler.transform(X)
else:
X_scaled = X.values
# Predict
predicted_value = self.model.predict(X_scaled)[0]
# Calculate metrics
current_value = df['current_value'].iloc[0]
appreciation = predicted_value - current_value
appreciation_pct = (appreciation / current_value) * 100
return {
'current_value': current_value,
'predicted_future_value': predicted_value,
'predicted_appreciation': appreciation,
'appreciation_percentage': appreciation_pct,
'annual_appreciation_rate': appreciation_pct / 5 }
except Exception as e:
return {"error": f"Prediction error: {str(e)}"}
class PropertyPredictionApp:
def __init__(self):
self.predictor = PropertyValuePredictor()
self.model_loaded = False
self.load_model()
# State mappings
self.states = [
'AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA',
'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD',
'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ',
'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC',
'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY', 'DC'
]
self.property_types = [
'Single Family Home', 'Townhouse', 'Condo', 'Multi-Family',
'Duplex', 'Ranch', 'Colonial', 'Victorian', 'Modern', 'Split Level' ]
self.school_ratings = [
'Excellent', 'Very Good', 'Good', 'Average', 'Below Average'
]
def load_model(self):
"""Load the trained model with fallback options"""
model_files = [
'simple_property_model.joblib',
'enhanced_property_model.joblib',
'property_value_model.joblib'
]
for model_file in model_files:
if os.path.exists(model_file):
try:
success = self.predictor.load_model(model_file)
if success:
self.model_loaded = True
print(f"โ
Successfully loaded model from {model_file}")
return
except Exception as e:
print(f"โ Failed to load {model_file}: {e}")
continue
print("โ No model file found. Using demo mode.")
self.model_loaded = False
def predict_property_value(self, current_value, year_built, state, property_type,
bedrooms, bathrooms, square_feet, lot_size,
school_district_rating, monthly_rent, property_tax,
hoa_monthly):
"""Predict future property value"""
if not self.model_loaded:
# Demo mode - simple calculation
base_appreciation = 0.05 # 5% annual
years = 5
demo_value = current_value * (1 + base_appreciation) ** years
prediction_text = (
f"๐จ **Demo Mode** (No model loaded)\n\n"
f"**Current Property Value:** ${current_value:,.2f}\n\n"
f"**Estimated 5-Year Value:** ${demo_value:,.2f}\n\n"
f"**Estimated Appreciation:** ${demo_value - current_value:,.2f} ({((demo_value - current_value) / current_value) * 100:.1f}%)\n\n"
f"**Annual Appreciation Rate:** {((demo_value / current_value) ** (1/5) - 1) * 100:.1f}%\n\n"
f"*Note: This is a demo calculation using 5% annual appreciation. Train and upload a model for accurate predictions.*"
)
chart = self.create_prediction_chart(current_value, None)
return prediction_text, chart
try:
# Prepare property data
property_data = {
'current_value': current_value,
'year_built': year_built,
'state': state,
'property_type': property_type,
'bedrooms': bedrooms,
'bathrooms': bathrooms,
'square_feet': square_feet,
'lot_size': lot_size,
'school_district_rating': school_district_rating,
'monthly_rent_estimate': monthly_rent,
'property_tax_annual': property_tax,
'hoa_monthly': hoa_monthly
}
# Get prediction
result = self.predictor.predict_future_value(property_data)
if "error" in result:
error_text = f"โ **Error:** {result['error']}"
chart = self.create_prediction_chart(current_value, None)
return error_text, chart
# Format results
current_val = result['current_value']
future_val = result['predicted_future_value']
appreciation = result['predicted_appreciation']
appreciation_pct = result['appreciation_percentage']
annual_rate = result['annual_appreciation_rate']
prediction_text = (
f"## ๐ Property Value Prediction Results\n\n"
f"**Current Property Value:** ${current_val:,.2f}\n\n"
f"**Predicted 5-Year Value:** ${future_val:,.2f}\n\n"
f"**Total Appreciation:** ${appreciation:,.2f}\n\n"
f"**Appreciation Percentage:** {appreciation_pct:.2f}%\n\n"
f"**Annual Appreciation Rate:** {annual_rate:.2f}%\n\n"
f"---\n\n"
f"๐ **Investment Analysis:**\n"
f"- Monthly appreciation: ${appreciation/60:,.2f}\n"
f"- ROI over 5 years: {appreciation_pct:.1f}%\n"
f"- Estimated monthly rent: ${monthly_rent:,.2f}\n"
f"- Property tax burden: {(property_tax/current_val)*100:.2f}% of value" )
# Create chart with actual prediction
chart = self.create_prediction_chart(current_val, future_val)
return prediction_text, chart
except Exception as e:
error_text = f"โ **Prediction Error:** {str(e)}"
chart = self.create_prediction_chart(current_value, None)
return error_text, chart
def create_prediction_chart(self, current_value, predicted_value=None):
"""Create a chart showing actual prediction results"""
years = list(range(0, 6))
if predicted_value is None or not self.model_loaded:
# Demo mode - use 5% annual appreciation
values = [current_value * (1.05 ** year) for year in years]
title = "Demo: Property Value Growth (5% Annual)"
line_color = '#FFA500' # Orange for demo
else:
# Use actual prediction - interpolate between current and predicted
annual_rate = (predicted_value / current_value) ** (1/5) - 1
total_appreciation = ((predicted_value - current_value) / current_value) * 100
values = [current_value * (1 + annual_rate) ** year for year in years]
title = f"AI Prediction: {total_appreciation:.1f}% Total Growth ({annual_rate*100:.1f}% Annual)"
line_color = '#2E86AB' # Blue for real predictions
fig = go.Figure()
fig.add_trace(go.Scatter(
x=years,
y=values,
mode='lines+markers',
name='Property Value',
line=dict(color=line_color, width=3),
marker=dict(size=8)
))
# Add annotations for key points
fig.add_annotation(
x=0, y=values[0],
text=f"Current: ${values[0]:,.0f}",
showarrow=True,
arrowhead=2,
bgcolor="white",
bordercolor=line_color
)
fig.add_annotation(
x=5, y=values[5],
text=f"5-Year: ${values[5]:,.0f}",
showarrow=True,
arrowhead=2,
bgcolor="white",
bordercolor=line_color
)
# Add total appreciation annotation for ML predictions
if predicted_value is not None and self.model_loaded:
total_appreciation = ((predicted_value - current_value) / current_value) * 100
fig.add_annotation(
x=2.5, y=values[2] + (values[5] - values[2]) * 0.3,
text=f"Total Growth: +{total_appreciation:.1f}%",
showarrow=False,
bgcolor="rgba(46, 134, 171, 0.8)",
bordercolor=line_color,
font=dict(color="white", size=14, family="Arial Black")
)
fig.update_layout(
title=title,
xaxis_title="Years from Now",
yaxis_title="Property Value ($)",
template="plotly_white",
height=400,
yaxis=dict(tickformat='$,.0f')
)
return fig
def create_interface(self):
"""Create the Gradio interface"""
with gr.Blocks(title="๐ Property Value Predictor", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# ๐ AI Property Value Predictor
Predict your property's value 5 years from now using advanced machine learning!
**How it works:**
1. Enter your property details below
2. Click "Predict Future Value"
3. Get instant AI-powered predictions with detailed analysis
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### ๐ Property Details")
current_value = gr.Number(
label="Current Property Value ($)",
value=500000,
minimum=50000,
maximum=10000000,
step=10000
)
year_built = gr.Number(
label="Year Built",
value=2010,
minimum=1800,
maximum=2025,
step=1
)
state = gr.Dropdown(
choices=self.states,
label="State",
value="CA"
)
property_type = gr.Dropdown(
choices=self.property_types,
label="Property Type",
value="Single Family Home"
)
with gr.Column(scale=1):
gr.Markdown("### ๐ก Property Features")
bedrooms = gr.Number(
label="Bedrooms",
value=3,
minimum=1,
maximum=10,
step=1
)
bathrooms = gr.Number(
label="Bathrooms",
value=2.5,
minimum=1,
maximum=10,
step=0.5
)
square_feet = gr.Number(
label="Square Feet",
value=2000,
minimum=300,
maximum=20000,
step=100
)
lot_size = gr.Number(
label="Lot Size (acres)",
value=0.25,
minimum=0.01,
maximum=5.0,
step=0.01
)
with gr.Column(scale=1):
gr.Markdown("### ๐ฐ Financial Details")
school_rating = gr.Dropdown(
choices=self.school_ratings,
label="School District Rating",
value="Good"
)
monthly_rent = gr.Number(
label="Estimated Monthly Rent ($)",
value=2500,
minimum=500,
maximum=20000,
step=100
)
property_tax = gr.Number(
label="Annual Property Tax ($)",
value=6000,
minimum=500,
maximum=100000,
step=500
)
hoa_monthly = gr.Number(
label="Monthly HOA Fee ($)",
value=0,
minimum=0,
maximum=2000,
step=50
)
with gr.Row():
predict_btn = gr.Button(
"๐ฎ Predict Future Value",
variant="primary",
size="lg"
)
with gr.Row():
with gr.Column(scale=2): prediction_output = gr.Markdown(
label="Prediction Results",
value="Enter property details and click 'Predict Future Value' to see AI predictions!"
)
with gr.Column(scale=1):
chart_output = gr.Plot(label="Value Projection Chart")
# Event handlers
predict_btn.click(
fn=self.predict_property_value,
inputs=[
current_value, year_built, state, property_type,
bedrooms, bathrooms, square_feet, lot_size,
school_rating, monthly_rent, property_tax, hoa_monthly
],
outputs=[prediction_output, chart_output]
)
# Update chart when current value changes (demo mode only)
current_value.change(
fn=lambda val: self.create_prediction_chart(val, None),
inputs=current_value,
outputs=chart_output
)
# Set initial chart
interface.load(
fn=lambda: self.create_prediction_chart(500000, None),
outputs=chart_output
)
gr.Markdown("""
---
### ๐ About This Tool
This AI-powered property value predictor uses machine learning to analyze:
- **Property characteristics** (age, size, type, location)
- **Market factors** (school ratings, comparable sales)
- **Financial metrics** (rent potential, taxes, HOA fees)
- **Historical trends** and regional market patterns
**Disclaimer:** Predictions are estimates based on historical data and should not be considered as professional real estate advice.
""")
return interface
def main():
"""Main function to create and launch the app"""
print("๐ Starting Property Value Predictor App...")
app = PropertyPredictionApp()
interface = app.create_interface()
# Launch the interface
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
if __name__ == "__main__":
main()
|