File size: 5,514 Bytes
5dfbe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f5ff1
 
 
 
 
5dfbe50
9fc7504
 
 
 
5dfbe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f5ff1
 
5dfbe50
c3f5ff1
5dfbe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python3
"""
ColPali Embedding API for generating query embeddings
"""

import os
import logging
import numpy as np
from pathlib import Path
from typing import List, Dict
from fastapi import FastAPI, Query, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import torch
from PIL import Image
import uvicorn

from colpali_engine.models import ColPali, ColPaliProcessor
from colpali_engine.utils.torch_utils import get_torch_device

# Set HF token if available
hf_token = os.environ.get("HUGGING_FACE_TOKEN") or os.environ.get("HF_TOKEN")
if hf_token:
    os.environ["HF_TOKEN"] = hf_token

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Initialize FastAPI
app = FastAPI(title="ColPali Embedding API")

# Configure CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["http://localhost:3000", "http://localhost:3025", "http://localhost:4000"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global model variables
model = None
processor = None
device = None

MAX_QUERY_TERMS = 64

def load_model():
    """Load ColPali model and processor"""
    global model, processor, device
    
    if model is None:
        logger.info("Loading ColPali model...")
        device = get_torch_device("auto")
        logger.info(f"Using device: {device}")
        
        try:
            model_name = "vidore/colpali-v1.2"
            model = ColPali.from_pretrained(
                model_name,
                torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
                device_map=device,
                token=hf_token
            ).eval()
            processor = ColPaliProcessor.from_pretrained(model_name, token=hf_token)
            logger.info("ColPali model loaded successfully")
        except Exception as e:
            logger.error(f"Error loading model: {e}")
            # Try alternative model
            model_name = "vidore/colpaligemma-3b-pt-448-base"
            model = ColPali.from_pretrained(
                model_name,
                torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
                device_map=device
            ).eval()
            processor = ColPaliProcessor.from_pretrained(model_name)
            logger.info(f"Loaded alternative model: {model_name}")
    
    return model, processor


@app.get("/health")
async def health():
    """Health check endpoint"""
    return {"status": "healthy", "service": "colpali-embedding-api"}


@app.get("/embed_query")
async def embed_query(
    query: str = Query(..., description="Text query to embed")
):
    """Generate ColPali embeddings for a text query"""
    try:
        model, processor = load_model()
        
        # Create a dummy image for text-only queries
        # ColPali expects image inputs, so we use a white image
        dummy_image = Image.new('RGB', (448, 448), color='white')
        
        # Process query with dummy image
        inputs = processor(
            images=[dummy_image],
            text=[query],
            return_tensors="pt",
            padding=True
        ).to(device)
        
        # Generate embeddings
        with torch.no_grad():
            embeddings = model(**inputs)  # Direct output, not .last_hidden_state
        
        # Process embeddings for Vespa format
        # Extract query embeddings (text tokens)
        query_embeddings = embeddings[0]  # First item in batch
        
        # Convert to list format expected by Vespa
        float_query_embedding = {}
        binary_query_embeddings = {}
        
        for idx in range(min(query_embeddings.shape[0], MAX_QUERY_TERMS)):
            embedding_vector = query_embeddings[idx].cpu().numpy().tolist()
            float_query_embedding[str(idx)] = embedding_vector
            
            # Create binary version
            binary_vector = (
                np.packbits(np.where(np.array(embedding_vector) > 0, 1, 0))
                .astype(np.int8)
                .tolist()
            )
            binary_query_embeddings[str(idx)] = binary_vector
        
        return {
            "query": query,
            "embeddings": {
                "float": float_query_embedding,
                "binary": binary_query_embeddings
            },
            "num_tokens": len(float_query_embedding)
        }
        
    except Exception as e:
        logger.error(f"Embedding error: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/embed_query_simple")
async def embed_query_simple(
    query: str = Query(..., description="Text query to embed")
):
    """Generate simplified embeddings for text query (for testing)"""
    try:
        # For testing, return mock embeddings
        # In production, this would use the actual ColPali model
        mock_embedding = [0.1] * 128  # 128-dimensional embedding
        
        return {
            "query": query,
            "embedding": mock_embedding,
            "model": "colpali-v1.2"
        }
        
    except Exception as e:
        logger.error(f"Embedding error: {e}")
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    port = int(os.getenv("EMBEDDING_PORT", "7861"))
    logger.info(f"Starting ColPali Embedding API on port {port}")
    # Pre-load model
    load_model()
    uvicorn.run(app, host="0.0.0.0", port=port)