Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gradio import ChatMessage | |
from utils import stream_from_transformers_agent | |
from gradio.context import Context | |
from gradio import Request | |
import pickle | |
import os | |
from dotenv import load_dotenv | |
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX | |
from tools.text_to_image import TextToImageTool | |
load_dotenv() | |
sessions_path = "sessions.pkl" | |
sessions = ( | |
pickle.load(open(sessions_path, "rb")) if os.path.exists(sessions_path) else {} | |
) | |
# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model | |
model_name = ( | |
"meta-llama/Meta-Llama-3.1-8B-Instruct" | |
if os.getenv("SPACE_ID") is not None | |
else "http://localhost:1234/v1" | |
) | |
# Add image tools to the default task solving toolbox, for a more visually interactive experience | |
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + [TextToImageTool()] | |
agent = get_agent(model_name=model_name, toolbox=TASK_SOLVING_TOOLBOX) | |
app = None | |
def append_example_message(x: gr.SelectData, messages): | |
if x.value["text"] is not None: | |
message = x.value["text"] | |
if "files" in x.value: | |
if isinstance(x.value["files"], list): | |
message = "Here are the files: " | |
for file in x.value["files"]: | |
message += f"{file}, " | |
else: | |
message = x.value["files"] | |
messages.append(ChatMessage(role="user", content=message)) | |
return messages | |
def add_message(message, messages): | |
messages.append(ChatMessage(role="user", content=message)) | |
return messages | |
def interact_with_agent(messages, request: Request): | |
session_hash = request.session_hash | |
prompt = messages[-1]["content"] | |
agent.logs = sessions.get(session_hash + "_logs", []) | |
for msg in stream_from_transformers_agent(agent, prompt): | |
messages.append(msg) | |
yield messages | |
yield messages | |
def persist(component): | |
def resume_session(value, request: Request): | |
session_hash = request.session_hash | |
print(f"Resuming session for {session_hash}") | |
state = sessions.get(session_hash, value) | |
agent.logs = sessions.get(session_hash + "_logs", []) | |
return state | |
def update_session(value, request: Request): | |
session_hash = request.session_hash | |
print(f"Updating persisted session state for {session_hash}") | |
sessions[session_hash] = value | |
sessions[session_hash + "_logs"] = agent.logs | |
pickle.dump(sessions, open(sessions_path, "wb")) | |
return | |
Context.root_block.load(resume_session, inputs=[component], outputs=component) | |
component.change(update_session, inputs=[component], outputs=[]) | |
return component | |
with gr.Blocks(fill_height=True) as demo: | |
chatbot = persist( | |
gr.Chatbot( | |
value=[], | |
label="SQuAD Agent", | |
type="messages", | |
avatar_images=( | |
None, | |
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", | |
), | |
scale=1, | |
autoscroll=True, | |
show_copy_all_button=True, | |
show_copy_button=True, | |
placeholder="""<h1>SQuAD Agent</h1> | |
<h2>I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).</h2> | |
""", | |
examples=[ | |
{ | |
"text": "What is on top of the Notre Dame building?", | |
}, | |
{ | |
"text": "Tell me what's on top of the Notre Dame building, and draw a picture of it.", | |
}, | |
{ | |
"text": "Draw a picture of whatever is on top of the Notre Dame building.", | |
}, | |
], | |
) | |
) | |
text_input = gr.Textbox(lines=1, label="Chat Message", scale=0) | |
chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot]) | |
bot_msg = chat_msg.then(interact_with_agent, [chatbot], [chatbot]) | |
text_input.submit(lambda: "", None, text_input) | |
chatbot.example_select(append_example_message, [chatbot], [chatbot]).then( | |
interact_with_agent, [chatbot], [chatbot] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |