Spaces:
Sleeping
Sleeping
File size: 6,317 Bytes
e1f229a 0169392 e1f229a 0169392 e1f229a 0169392 e5254aa e1f229a e5254aa e1f229a e5254aa e1f229a e5254aa e1f229a 0169392 e1f229a 0169392 e1f229a 0169392 e1f229a 0169392 e1f229a e5254aa e1f229a e5254aa e1f229a e5254aa e1f229a e5254aa e1f229a e5254aa e1f229a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from transformers import pipeline, AutoTokenizer, VisionEncoderDecoderModel, AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
from io import BytesIO
import base64
import json
import torch
from qwen_vl_utils import process_vision_info
import prompt
# Chuyển ảnh thành base64 (tùy chọn nếu bạn cần hiển thị hoặc xuất)
def pil_to_base64(image: Image.Image, format="PNG") -> str:
buffered = BytesIO()
image.save(buffered, format=format)
buffered.seek(0)
return base64.b64encode(buffered.read()).decode("utf-8")
def parse_to_json(result_text):
"""
Nếu output là các dòng 'key: value', parse thành dict.
Nếu không, gói nguyên text vào trường 'text'.
"""
data = {}
lines = [line.strip() for line in result_text.splitlines() if line.strip()]
for line in lines:
if ":" in line:
key, val = line.split(":", 1)
data[key.strip()] = val.strip()
else:
# Nếu không tách được, gom vào list chung
data.setdefault("text", []).append(line)
# Nếu chỉ có list 'text', chuyển về chuỗi
if set(data.keys()) == {"text"}:
data = {"text": "\n".join(data["text"])}
return data
# class TrOCRModel:
# def __init__(self, model_id="microsoft/trocr-base-printed", cache_dir=None, device=None):
# self.model_id = model_id
# self.cache_dir = cache_dir
# self.device = device
# self.processor = TrOCRProcessor.from_pretrained(self.model_id, cache_dir=self.cache_dir)
# self.model = VisionEncoderDecoderModel.from_pretrained(self.model_id, cache_dir=self.cache_dir)
# self.model.to(self.device)
# def predict(self, image: Image.Image) -> str:
# if image is None:
# raise ValueError("No image provided")
# image = image.convert("RGB")
# pixel_values = self.processor(images=image, return_tensors="pt").pixel_values.to(self.device)
# with torch.no_grad():
# generated_ids = self.model.generate(pixel_values)
# generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# return generated_text
class TrOCRModel:
def __init__(self, model_id="microsoft/trocr-base-printed", cache_dir=None, device=None):
self.pipe = pipeline("image-to-text", model=model_id, device=device)
def predict(self, image: Image.Image) -> str:
if image is None:
raise ValueError("No image provided")
image = image.convert("RGB")
result = self.pipe(image)
return result[0]['generated_text'] if result else ""
class EraXModel:
def __init__(self, model_id="erax-ai/EraX-VL-2B-V1.5", cache_dir=None, device="auto"):
size = {
"shortest_edge": 56 * 56, # đủ chi tiết, dùng phổ biến trong ViT/TrOCR
"longest_edge": 1280 * 28 * 28 # giới hạn chiều dài ảnh nếu là ảnh dọc hoặc ngang dài
}
# with open(config_json_path, 'r', encoding='utf-8') as f:
# self.json_template = json.dumps(json.load(f), ensure_ascii=False)
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_id,
cache_dir=cache_dir,
torch_dtype=torch.bfloat16,
attn_implementation="eager", # replace with "flash_attention_2" if your GPU is Ampere architecture
device_map="auto",
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_dir)
self.processor = AutoProcessor.from_pretrained(
model_id,
size=size,
cache_dir=cache_dir,
)
# Generation configs
self.generation_config = self.model.generation_config
self.generation_config.do_sample = True
self.generation_config.temperature = 1.0
self.generation_config.top_k = 1
self.generation_config.top_p = 0.9
self.generation_config.min_p = 0.1
self.generation_config.best_of = 5
self.generation_config.max_new_tokens = 784
self.generation_config.repetition_penalty = 1.06
def predict(self, image: Image.Image) -> str:
if image is None:
raise ValueError("No image provided")
# image_path = "image.png"
# # Read and encode the image
# with open(image_path, "rb") as f:
# encoded_image = base64.b64encode(f.read())
# decoded_image_text = encoded_image.decode('utf-8')
# base64_data = f"data:image;base64,{decoded_image_text}"
decoded_image_text = pil_to_base64(image)
base64_data = f"data:image;base64,{decoded_image_text}"
# Prepare messages
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": base64_data,
},
{
"type": "text",
"text": prompt.CCCD_BOTH_SIDE_PROMPT,
},
],
}
]
# Prepare prompt
tokenized_text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
print("Tokenized text")
image_inputs, video_inputs = process_vision_info(messages)
print("Processed vision info done")
inputs = self.processor(
text=[tokenized_text],
# images=image_inputs,
images=[image],
# videos=video_inputs,
padding=True,
return_tensors="pt",
).to(self.model.device)
print("Inputs prepared")
# Inference
print("Generating text...")
generated_ids = self.model.generate(**inputs, generation_config=self.generation_config)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
|