Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from torchvision import models, transforms
|
3 |
from PIL import Image
|
4 |
-
import
|
|
|
5 |
|
6 |
-
# Load
|
7 |
model = models.mobilenet_v2(pretrained=True)
|
8 |
model.eval()
|
9 |
|
10 |
-
#
|
11 |
transform = transforms.Compose([
|
12 |
transforms.Resize(256),
|
13 |
transforms.CenterCrop(224),
|
@@ -15,17 +17,27 @@ transform = transforms.Compose([
|
|
15 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
16 |
])
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Perform inference
|
23 |
with torch.no_grad():
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
# Gradio interface
|
30 |
-
|
31 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from torchvision import models, transforms
|
4 |
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
|
8 |
+
# Load pre-trained MobileNetV2 model (you can choose another model as needed)
|
9 |
model = models.mobilenet_v2(pretrained=True)
|
10 |
model.eval()
|
11 |
|
12 |
+
# Define the image transformation (resize, normalization)
|
13 |
transform = transforms.Compose([
|
14 |
transforms.Resize(256),
|
15 |
transforms.CenterCrop(224),
|
|
|
17 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
18 |
])
|
19 |
|
20 |
+
# Download the ImageNet class labels (you can replace this with your own if needed)
|
21 |
+
LABELS_URL = "https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json"
|
22 |
+
class_idx = requests.get(LABELS_URL).json()
|
23 |
+
idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]
|
24 |
+
|
25 |
+
# Function to perform image inference
|
26 |
+
def predict_image(image):
|
27 |
+
image = Image.open(BytesIO(image)).convert("RGB")
|
28 |
+
image = transform(image).unsqueeze(0)
|
29 |
|
30 |
# Perform inference
|
31 |
with torch.no_grad():
|
32 |
+
output = model(image)
|
33 |
+
|
34 |
+
# Get the predicted label
|
35 |
+
_, predicted_class = torch.max(output, 1)
|
36 |
+
label = idx2label[predicted_class.item()]
|
37 |
+
return label
|
38 |
|
39 |
# Gradio interface
|
40 |
+
with gr.Interface(fn=predict_image,
|
41 |
+
inputs=gr.inputs.Image(type="bytes"),
|
42 |
+
outputs=gr.outputs.Textbox()) as demo:
|
43 |
+
demo.launch(debug=True)
|