from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch app = FastAPI() # Load model and tokenizer once on startup tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5p-220m") model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5p-220m") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) class GenerationRequest(BaseModel): prompt: str max_length: int = 2048 num_beams: int = 3 early_stopping: bool = True no_repeat_ngram_size: int = 3 @app.post("/generate") async def generate_text(request: GenerationRequest): inputs = tokenizer(request.prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_length=request.max_length, num_beams=request.num_beams, early_stopping=request.early_stopping, no_repeat_ngram_size=request.no_repeat_ngram_size, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": output_text} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8080)