Spaces:
Runtime error
Runtime error
import torch | |
from torch.utils.data import Dataset, DataLoader, random_split | |
import numpy as np | |
import pandas as pd | |
import torchaudio as ta | |
from .pipelines import AudioTrainingPipeline | |
import pytorch_lightning as pl | |
from .preprocess import get_examples | |
from sklearn.model_selection import train_test_split | |
class SongDataset(Dataset): | |
def __init__(self, | |
audio_paths: list[str], | |
dance_labels: list[np.ndarray], | |
audio_duration=30, # seconds | |
audio_window_duration=6, # seconds | |
audio_window_jitter=0.0, # seconds | |
audio_pipeline_kwargs={}, | |
resample_frequency=16000 | |
): | |
assert audio_duration % audio_window_duration == 0, "Audio window should divide duration evenly." | |
assert audio_window_duration > audio_window_jitter, "Jitter should be a small fraction of the audio window duration." | |
self.audio_paths = audio_paths | |
self.dance_labels = dance_labels | |
audio_info = ta.info(audio_paths[0]) | |
self.sample_rate = audio_info.sample_rate | |
self.audio_window_duration = int(audio_window_duration) | |
self.audio_window_jitter = audio_window_jitter | |
self.audio_duration = int(audio_duration) | |
self.audio_pipeline = AudioTrainingPipeline(self.sample_rate, resample_frequency, audio_window_duration, **audio_pipeline_kwargs) | |
def __len__(self): | |
return len(self.audio_paths) * self.audio_duration // self.audio_window_duration | |
def __getitem__(self, idx:int) -> tuple[torch.Tensor, torch.Tensor]: | |
waveform = self._waveform_from_index(idx) | |
assert waveform.shape[1] > 10, f"No data found: {self._backtrace_audio_path(idx)}" | |
spectrogram = self.audio_pipeline(waveform) | |
dance_labels = self._label_from_index(idx) | |
example_is_valid = self._validate_output(spectrogram, dance_labels) | |
if example_is_valid: | |
return spectrogram, dance_labels | |
else: | |
# Try the previous one | |
# This happens when some of the audio recordings are really quiet | |
# This WILL NOT leak into other data partitions because songs belong entirely to a partition | |
return self[idx-1] | |
def _convert_idx(self,idx:int) -> int: | |
return idx * self.audio_window_duration // self.audio_duration | |
def _backtrace_audio_path(self, index:int) -> str: | |
return self.audio_paths[self._convert_idx(index)] | |
def _validate_output(self,x,y): | |
is_finite = not torch.any(torch.isinf(x)) | |
is_numerical = not torch.any(torch.isnan(x)) | |
has_data = torch.any(x != 0.0) | |
is_binary = len(torch.unique(y)) < 3 | |
return all((is_finite,is_numerical, has_data, is_binary)) | |
def _waveform_from_index(self, idx:int) -> torch.Tensor: | |
audio_filepath = self.audio_paths[self._convert_idx(idx)] | |
num_windows = self.audio_duration // self.audio_window_duration | |
frame_index = idx % num_windows | |
jitter_start = -self.audio_window_jitter if frame_index > 0 else 0.0 | |
jitter_end = self.audio_window_jitter if frame_index != num_windows - 1 else 0.0 | |
jitter = int(torch.FloatTensor(1).uniform_(jitter_start, jitter_end) * self.sample_rate) | |
frame_offset = frame_index * self.audio_window_duration * self.sample_rate + jitter | |
num_frames = self.sample_rate * self.audio_window_duration | |
waveform, sample_rate = ta.load(audio_filepath, frame_offset=frame_offset, num_frames=num_frames) | |
assert sample_rate == self.sample_rate, f"Expected sample rate of {self.sample_rate}. Found {sample_rate}" | |
return waveform | |
def _label_from_index(self, idx:int) -> torch.Tensor: | |
return torch.from_numpy(self.dance_labels[self._convert_idx(idx)]) | |
class DanceDataModule(pl.LightningDataModule): | |
def __init__(self, | |
song_data_path="data/songs_cleaned.csv", | |
song_audio_path="data/samples", | |
test_proportion=0.15, | |
val_proportion=0.1, | |
target_classes:list[str]=None, | |
min_votes=1, | |
batch_size:int=64, | |
num_workers=10, | |
dataset_kwargs={} | |
): | |
super().__init__() | |
self.song_data_path = song_data_path | |
self.song_audio_path = song_audio_path | |
self.val_proportion=val_proportion | |
self.test_proportion=test_proportion | |
self.train_proportion= 1.-test_proportion-val_proportion | |
self.target_classes=target_classes | |
self.batch_size = batch_size | |
self.num_workers = num_workers | |
self.dataset_kwargs = dataset_kwargs | |
df = pd.read_csv(song_data_path) | |
self.x,self.y = get_examples(df, self.song_audio_path,class_list=self.target_classes, multi_label=True, min_votes=min_votes) | |
def setup(self, stage: str): | |
train_i, val_i, test_i = random_split(np.arange(len(self.x)), [self.train_proportion, self.val_proportion, self.test_proportion]) | |
self.train_ds = self._dataset_from_indices(train_i) | |
self.val_ds = self._dataset_from_indices(val_i) | |
self.test_ds = self._dataset_from_indices(test_i) | |
def _dataset_from_indices(self, idx:list[int]) -> SongDataset: | |
return SongDataset(self.x[idx], self.y[idx], **self.dataset_kwargs) | |
def train_dataloader(self): | |
return DataLoader(self.train_ds, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True) | |
def val_dataloader(self): | |
return DataLoader(self.val_ds, batch_size=self.batch_size, num_workers=self.num_workers) | |
def test_dataloader(self): | |
return DataLoader(self.test_ds, batch_size=self.batch_size, num_workers=self.num_workers) | |
def get_label_weights(self): | |
n_examples, n_classes = self.y.shape | |
return torch.from_numpy(n_examples / (n_classes * sum(self.y))) |