Spaces:
Sleeping
Sleeping
Commit
·
468731a
1
Parent(s):
0a9972d
LG3
Browse files- app.py +3 -3
- app_walledguard.py +88 -0
app.py
CHANGED
@@ -16,7 +16,7 @@ Answer: [/INST]
|
|
16 |
# Load the model and tokenizer
|
17 |
@st.cache_resource
|
18 |
def load_model():
|
19 |
-
model_name = "
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
22 |
return tokenizer, model
|
@@ -35,8 +35,8 @@ def evaluate_text(user_input):
|
|
35 |
tokenizer, model = st.session_state.model_and_tokenizer
|
36 |
|
37 |
# Prepare input
|
38 |
-
input_ids = tokenizer.
|
39 |
-
|
40 |
# Generate output
|
41 |
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
|
42 |
|
|
|
16 |
# Load the model and tokenizer
|
17 |
@st.cache_resource
|
18 |
def load_model():
|
19 |
+
model_name = "meta-llama/Llama-Guard-3-8B"
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
22 |
return tokenizer, model
|
|
|
35 |
tokenizer, model = st.session_state.model_and_tokenizer
|
36 |
|
37 |
# Prepare input
|
38 |
+
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
|
39 |
+
|
40 |
# Generate output
|
41 |
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
|
42 |
|
app_walledguard.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Define the template
|
8 |
+
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
|
9 |
+
<START TEXT>
|
10 |
+
{prompt}
|
11 |
+
<END TEXT>
|
12 |
+
|
13 |
+
Answer: [/INST]
|
14 |
+
"""
|
15 |
+
|
16 |
+
# Load the model and tokenizer
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
model_name = "walledai/walledguard-c"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
22 |
+
return tokenizer, model
|
23 |
+
|
24 |
+
# Function to load image from URL
|
25 |
+
@st.cache_data()
|
26 |
+
def load_image_from_url(url):
|
27 |
+
response = requests.get(url)
|
28 |
+
img = Image.open(BytesIO(response.content))
|
29 |
+
return img
|
30 |
+
|
31 |
+
# Evaluation function
|
32 |
+
def evaluate_text(user_input):
|
33 |
+
if user_input:
|
34 |
+
# Get model and tokenizer from session state
|
35 |
+
tokenizer, model = st.session_state.model_and_tokenizer
|
36 |
+
|
37 |
+
# Prepare input
|
38 |
+
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
|
39 |
+
|
40 |
+
# Generate output
|
41 |
+
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
|
42 |
+
|
43 |
+
# Decode output
|
44 |
+
prompt_len = input_ids.shape[-1]
|
45 |
+
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
|
46 |
+
|
47 |
+
# Determine prediction
|
48 |
+
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe'
|
49 |
+
|
50 |
+
return prediction
|
51 |
+
return None
|
52 |
+
|
53 |
+
# Streamlit app
|
54 |
+
st.title("Text Safety Evaluator")
|
55 |
+
|
56 |
+
# Load model and tokenizer once and store in session state
|
57 |
+
if 'model_and_tokenizer' not in st.session_state:
|
58 |
+
st.session_state.model_and_tokenizer = load_model()
|
59 |
+
|
60 |
+
# User input
|
61 |
+
user_input = st.text_area("Enter the text you want to evaluate:", height=100)
|
62 |
+
|
63 |
+
# Create an empty container for the result
|
64 |
+
result_container = st.empty()
|
65 |
+
|
66 |
+
if st.button("Evaluate"):
|
67 |
+
prediction = evaluate_text(user_input)
|
68 |
+
if prediction:
|
69 |
+
result_container.subheader("Evaluation Result:")
|
70 |
+
result_container.write(f"The text is evaluated as: **{prediction.upper()}**")
|
71 |
+
else:
|
72 |
+
result_container.warning("Please enter some text to evaluate.")
|
73 |
+
|
74 |
+
# Add logo at the bottom center (only once)
|
75 |
+
#if 'logo_displayed' not in st.session_state:
|
76 |
+
col1, col2, col3 = st.columns([1,2,1])
|
77 |
+
with col2:
|
78 |
+
logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6"
|
79 |
+
logo = load_image_from_url(logo_url)
|
80 |
+
st.image(logo, use_column_width=True, width=500) # Adjust the width as needed
|
81 |
+
#st.session_state.logo_displayed = True
|
82 |
+
|
83 |
+
# Add information about Walled Guard Advanced (only once)
|
84 |
+
#if 'info_displayed' not in st.session_state:
|
85 |
+
col1, col2, col3 = st.columns([1,2,1])
|
86 |
+
with col2:
|
87 |
+
st.info("For a more performant version, check out Walled Guard Advanced. Connect with us at admin@walled.ai for more information.")
|
88 |
+
#st.session_state.info_displayed = True
|