import torch from torch import Tensor, nn import gradio as gr from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer class HFEmbedder(nn.Module): def __init__(self, version: str, max_length: int, **hf_kwargs): super().__init__() self.is_clip = version.startswith("openai") self.max_length = max_length self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" if self.is_clip: self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) else: self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) self.hf_module = self.hf_module.eval().requires_grad_(False) def forward(self, text: list[str]) -> Tensor: batch_encoding = self.tokenizer( text, truncation=True, max_length=self.max_length, return_length=False, return_overflowing_tokens=False, padding="max_length", return_tensors="pt", ) outputs = self.hf_module( input_ids=batch_encoding["input_ids"].to(self.hf_module.device), attention_mask=None, output_hidden_states=False, ) return outputs[self.output_key] def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: # max length 64, 128, 256 and 512 should work (if your sequence is short enough) return HFEmbedder("city96/t5-v1_1-xxl-encoder-bf16", max_length=max_length, torch_dtype=torch.bfloat16).to(device) def run_t5_and_save(text): try: device = "cuda" if torch.cuda.is_available() else "cpu" print(f"使用设备: {device}") t5 = load_t5(device, max_length=512) embeddings = t5([text]) filename = text.replace(" ", "-") output_path = f"/tmp/embedt5_{filename}.pt" torch.save(embeddings, output_path) return f"嵌入形状: {embeddings.shape}", output_path except Exception as e: return f"运行错误: {e}", None if __name__ == "__main__": iface = gr.Interface( fn=run_t5_and_save, inputs=gr.Textbox(label="输入文本"), outputs=[gr.Textbox(label="结果"), gr.File(label="下载嵌入文件")], title="T5 Embedder", description="输入文本,生成 T5 嵌入并保存为文件" ) iface.launch()