Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,442 +1,442 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from PIL import Image
|
3 |
-
import streamlit as st
|
4 |
-
import cv2
|
5 |
-
from streamlit_drawable_canvas import st_canvas
|
6 |
-
import torch
|
7 |
-
from diffusers import AutoPipelineForInpainting
|
8 |
-
import numpy as np
|
9 |
-
from streamlit_image_select import image_select
|
10 |
-
import os
|
11 |
-
import requests
|
12 |
-
from streamlit_navigation_bar import st_navbar
|
13 |
-
from langchain_community.llms import Ollama
|
14 |
-
import base64
|
15 |
-
from io import BytesIO
|
16 |
-
from PIL import Image, ImageDraw
|
17 |
-
from streamlit_lottie import st_lottie
|
18 |
-
from streamlit_option_menu import option_menu
|
19 |
-
import json
|
20 |
-
from transformers import pipeline
|
21 |
-
import streamlit as st
|
22 |
-
from streamlit_modal import Modal
|
23 |
-
import streamlit.components.v1 as components
|
24 |
-
from datetime import datetime
|
25 |
-
|
26 |
-
|
27 |
-
def image_to_base64(image_path):
|
28 |
-
with open(image_path, "rb") as img_file:
|
29 |
-
return base64.b64encode(img_file.read()).decode()
|
30 |
-
|
31 |
-
|
32 |
-
@st.cache_resource
|
33 |
-
def load_model():
|
34 |
-
pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
|
35 |
-
return pipeline_
|
36 |
-
|
37 |
-
# @st.cache_resource
|
38 |
-
def prompt_improvment(pre_prompt):
|
39 |
-
|
40 |
-
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
41 |
-
enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
|
42 |
-
prompt = pre_prompt+"\n"+enhancement
|
43 |
-
# result = llm.invoke(prompt)
|
44 |
-
return llm.stream(prompt)
|
45 |
-
def numpy_to_list(array):
|
46 |
-
|
47 |
-
current=[]
|
48 |
-
for value in array:
|
49 |
-
if isinstance(value,type(np.array([]))):
|
50 |
-
result=numpy_to_list(value)
|
51 |
-
current.append(result)
|
52 |
-
else:
|
53 |
-
|
54 |
-
current.append(int(value))
|
55 |
-
return current
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
@st.cache_resource
|
60 |
-
def llm_text_response():
|
61 |
-
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
62 |
-
return llm.stream
|
63 |
-
|
64 |
-
def model_single_out(prompt):
|
65 |
-
pipe=load_model()
|
66 |
-
image = pipe(prompt).images[0]
|
67 |
-
return image
|
68 |
-
|
69 |
-
def model_out_put(init_image,mask_image,prompt,negative_prompt):
|
70 |
-
pipeline_ = load_model()
|
71 |
-
image = pipeline_(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
|
72 |
-
return image
|
73 |
-
|
74 |
-
@st.cache_resource
|
75 |
-
def multimodel():
|
76 |
-
pipeline_ = pipeline("text-classification", model = "model_collection\model_4")
|
77 |
-
return pipeline_
|
78 |
-
|
79 |
-
def multimodel_output(prompt):
|
80 |
-
pipeline_ = multimodel()
|
81 |
-
image = pipeline_(prompt)
|
82 |
-
return image[0]['label']
|
83 |
-
|
84 |
-
def d4_to_3d(image):
|
85 |
-
formatted_array=[]
|
86 |
-
for j in image:
|
87 |
-
neste_list=[]
|
88 |
-
for k in j:
|
89 |
-
if any([True if i>0 else False for i in k]):
|
90 |
-
neste_list.append(True)
|
91 |
-
else:
|
92 |
-
neste_list.append(False)
|
93 |
-
formatted_array.append(neste_list)
|
94 |
-
print(np.shape(formatted_array))
|
95 |
-
return np.array(formatted_array)
|
96 |
-
|
97 |
-
st.set_page_config(layout="wide")
|
98 |
-
|
99 |
-
st.write(str(os.getcwd()))
|
100 |
-
|
101 |
-
img_selection=None
|
102 |
-
# Specify canvas parameters in application
|
103 |
-
drawing_mode = st.sidebar.selectbox(
|
104 |
-
"Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
|
105 |
-
)
|
106 |
-
|
107 |
-
|
108 |
-
dictionary=st.session_state
|
109 |
-
if "every_prompt_with_val" not in dictionary:
|
110 |
-
dictionary['every_prompt_with_val']=[]
|
111 |
-
if "current_image" not in dictionary:
|
112 |
-
dictionary['current_image']=[]
|
113 |
-
if "prompt_collection" not in dictionary:
|
114 |
-
dictionary['prompt_collection']=[]
|
115 |
-
if "user" not in dictionary:
|
116 |
-
dictionary['user']=None
|
117 |
-
if "current_session" not in dictionary:
|
118 |
-
dictionary['current_session']=None
|
119 |
-
|
120 |
-
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
|
121 |
-
if drawing_mode == 'point':
|
122 |
-
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
|
123 |
-
stroke_color = '#000000'
|
124 |
-
bg_color = "#eee"
|
125 |
-
|
126 |
-
|
127 |
-
column1,column2=st.columns([0.7,0.35])
|
128 |
-
|
129 |
-
with open("DataBase\datetimeRecords.json","r") as read:
|
130 |
-
dateTimeRecord=json.load(read)
|
131 |
-
with column2:
|
132 |
-
st.header("HISTORY")
|
133 |
-
tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
|
134 |
-
with tab1:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
if not len(dictionary['every_prompt_with_val']):
|
139 |
-
st.header("I will store all the chat for the current session")
|
140 |
-
with open("lotte_animation_saver\\animation_4.json") as read:
|
141 |
-
url_json=json.load(read)
|
142 |
-
st_lottie(url_json,height = 400)
|
143 |
-
else:
|
144 |
-
|
145 |
-
with st.container(height=600):
|
146 |
-
|
147 |
-
|
148 |
-
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
|
149 |
-
if prompts_[-1]=="@working":
|
150 |
-
if index==0:
|
151 |
-
st.write(prompts_[0].upper())
|
152 |
-
data_need=st.write_stream(llm_text_response()(prompts_[0]))
|
153 |
-
dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
|
154 |
-
|
155 |
-
elif isinstance(prompts_[-1],str):
|
156 |
-
if index==0:
|
157 |
-
st.text_area(label=prompts_[0].upper(),value=prompts_[-1],height=500)
|
158 |
-
else:
|
159 |
-
st.text_area(label=prompts_[0].upper(),value=prompts_[-1])
|
160 |
-
|
161 |
-
else:
|
162 |
-
st.write(prompts_[0].upper())
|
163 |
-
with st.container(height=400):
|
164 |
-
format1,format2=st.columns([0.2,0.8])
|
165 |
-
with format1:
|
166 |
-
new_img=Image.open("ALL_image_formation\image_gen.png")
|
167 |
-
st.write("<br>",unsafe_allow_html=True)
|
168 |
-
size = min(new_img.size)
|
169 |
-
mask = Image.new('L', (size, size), 0)
|
170 |
-
draw = ImageDraw.Draw(mask)
|
171 |
-
draw.ellipse((0, 0, size, size), fill=255)
|
172 |
-
|
173 |
-
image = new_img.crop((0, 0, size, size))
|
174 |
-
image.putalpha(mask)
|
175 |
-
st.image(image)
|
176 |
-
with format2:
|
177 |
-
|
178 |
-
st.write("<br>",unsafe_allow_html=True)
|
179 |
-
size = min(prompts_[-1].size)
|
180 |
-
mask = Image.new('L', (size, size), 0)
|
181 |
-
draw = ImageDraw.Draw(mask)
|
182 |
-
draw.ellipse((0, 0, size, size), fill=255)
|
183 |
-
|
184 |
-
# Crop the image to a square and apply the mask
|
185 |
-
image = prompts_[-1].crop((0, 0, size, size))
|
186 |
-
image.putalpha(mask)
|
187 |
-
st.image(image)
|
188 |
-
|
189 |
-
with tab2:
|
190 |
-
|
191 |
-
if "current_image" in dictionary and len(dictionary['current_image']):
|
192 |
-
with st.container(height=600):
|
193 |
-
dictinory_length=len(dictionary['current_image'])
|
194 |
-
|
195 |
-
img_selection = image_select(
|
196 |
-
label="",
|
197 |
-
images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
|
198 |
-
)
|
199 |
-
if img_selection in dictionary['current_image']:
|
200 |
-
dictionary['current_image'].remove(img_selection)
|
201 |
-
dictionary['current_image'].insert(0,img_selection)
|
202 |
-
# st.rerun()
|
203 |
-
|
204 |
-
img_selection.save("image.png")
|
205 |
-
with open("image.png", "rb") as file:
|
206 |
-
downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
|
207 |
-
os.remove("image.png")
|
208 |
-
else:
|
209 |
-
|
210 |
-
st.header("This section will store the updated images")
|
211 |
-
with open("lotte_animation_saver\\animation_1.json") as read:
|
212 |
-
url_json=json.load(read)
|
213 |
-
st_lottie(url_json,height = 400)
|
214 |
-
with tab3:
|
215 |
-
if len(dictionary['prompt_collection'])!=0:
|
216 |
-
with st.container(height=600):
|
217 |
-
prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)
|
218 |
-
|
219 |
-
if prompt_selection!="Mention below are prompt history":
|
220 |
-
|
221 |
-
generated_prompt=prompt_improvment(prompt_selection)
|
222 |
-
dictionary['generated_image_prompt'].append(generated_prompt)
|
223 |
-
st.write_stream(generated_prompt)
|
224 |
-
|
225 |
-
else:
|
226 |
-
|
227 |
-
st.header("This section will provide prompt improvement section")
|
228 |
-
with open("lotte_animation_saver\\animation_3.json") as read:
|
229 |
-
url_json=json.load(read)
|
230 |
-
st_lottie(url_json,height = 400)
|
231 |
-
with tab4:
|
232 |
-
|
233 |
-
# with st.container(height=600):
|
234 |
-
|
235 |
-
if not dictionary['user'] :
|
236 |
-
with st.form("my_form"):
|
237 |
-
# st.header("Please login for save your data")
|
238 |
-
with open("lotte_animation_saver\\animation_5.json") as read:
|
239 |
-
url_json=json.load(read)
|
240 |
-
st_lottie(url_json,height = 200)
|
241 |
-
user_id = st.text_input("user login")
|
242 |
-
password = st.text_input("password",type="password")
|
243 |
-
submitted_login = st.form_submit_button("Submit")
|
244 |
-
# Every form must have a submit button.
|
245 |
-
|
246 |
-
if submitted_login:
|
247 |
-
with open("DataBase\login.json","r") as read:
|
248 |
-
login_base=json.load(read)
|
249 |
-
if user_id in login_base and login_base[user_id]==password:
|
250 |
-
dictionary['user']=user_id
|
251 |
-
st.rerun()
|
252 |
-
else:
|
253 |
-
st.error("userid or password incorrect")
|
254 |
-
|
255 |
-
st.write("working")
|
256 |
-
modal = Modal(
|
257 |
-
"Sign up",
|
258 |
-
key="demo-modal",
|
259 |
-
|
260 |
-
padding=10, # default value
|
261 |
-
max_width=600 # default value
|
262 |
-
)
|
263 |
-
open_modal = st.button("sign up")
|
264 |
-
if open_modal:
|
265 |
-
modal.open()
|
266 |
-
|
267 |
-
if modal.is_open():
|
268 |
-
with modal.container():
|
269 |
-
|
270 |
-
with st.form("my_form1"):
|
271 |
-
sign_up_column_left,sign_up_column_right=st.columns(2)
|
272 |
-
with sign_up_column_left:
|
273 |
-
with open("lotte_animation_saver\\animation_6.json") as read:
|
274 |
-
url_json=json.load(read)
|
275 |
-
st_lottie(url_json,height = 200)
|
276 |
-
|
277 |
-
with sign_up_column_right:
|
278 |
-
user_id = st.text_input("user login")
|
279 |
-
password = st.text_input("password",type="password")
|
280 |
-
submitted_signup = st.form_submit_button("Submit")
|
281 |
-
|
282 |
-
if submitted_signup:
|
283 |
-
with open("DataBase\login.json","r") as read:
|
284 |
-
login_base=json.load(read)
|
285 |
-
if not login_base:
|
286 |
-
login_base={}
|
287 |
-
if user_id not in login_base:
|
288 |
-
login_base[user_id]=password
|
289 |
-
with open("DataBase\login.json","w") as write:
|
290 |
-
json.dump(login_base,write,indent=2)
|
291 |
-
st.success("you are a part now")
|
292 |
-
dictionary['user']=user_id
|
293 |
-
modal.close()
|
294 |
-
else:
|
295 |
-
st.error("user id already exists")
|
296 |
-
else:
|
297 |
-
st.header("REPORTED ISSUES")
|
298 |
-
with st.container(height=370):
|
299 |
-
|
300 |
-
with open("DataBase\datetimeRecords.json") as feedback:
|
301 |
-
temp_issue=json.load(feedback)
|
302 |
-
|
303 |
-
arranged_feedback=reversed(temp_issue['database'])
|
304 |
-
|
305 |
-
for report in arranged_feedback:
|
306 |
-
user_columns,user_feedback=st.columns([0.3,0.8])
|
307 |
-
|
308 |
-
with user_columns:
|
309 |
-
st.write(report[-1])
|
310 |
-
with user_feedback:
|
311 |
-
st.write(report[1])
|
312 |
-
|
313 |
-
feedback=st.text_area("Feedback Report and Improvement",placeholder="")
|
314 |
-
summit=st.button("submit")
|
315 |
-
if summit:
|
316 |
-
with open("DataBase\datetimeRecords.json","r") as feedback_sumit:
|
317 |
-
temp_issue_submit=json.load(feedback_sumit)
|
318 |
-
if "database" not in temp_issue_submit:
|
319 |
-
temp_issue_submit["database"]=[]
|
320 |
-
temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user']))
|
321 |
-
with open("DataBase\datetimeRecords.json","w") as feedback_sumit:
|
322 |
-
json.dump(temp_issue_submit,feedback_sumit)
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
# st.rerun()
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
|
334 |
-
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])
|
335 |
-
|
336 |
-
|
337 |
-
if "bg_image" not in dictionary:
|
338 |
-
dictionary["bg_image"]=None
|
339 |
-
|
340 |
-
if img_selection and dictionary['bg_image']==bg_image:
|
341 |
-
gen_image=dictionary['current_image'][0]
|
342 |
-
else:
|
343 |
-
if bg_image:
|
344 |
-
gen_image=Image.open(bg_image)
|
345 |
-
else:
|
346 |
-
gen_image=None
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
with column1:
|
354 |
-
# Create a canvas component
|
355 |
-
changes,implementation,current=st.columns([0.3,0.6,0.3])
|
356 |
-
|
357 |
-
with implementation:
|
358 |
-
st.write("<br>"*5,unsafe_allow_html=True)
|
359 |
-
canvas_result = st_canvas(
|
360 |
-
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
|
361 |
-
stroke_width=stroke_width,
|
362 |
-
stroke_color=stroke_color,
|
363 |
-
background_color=bg_color,
|
364 |
-
background_image=gen_image if gen_image else Image.open("ALL_image_formation\image_gen.png"),
|
365 |
-
update_streamlit=True,
|
366 |
-
height=500,
|
367 |
-
width=500,
|
368 |
-
drawing_mode=drawing_mode,
|
369 |
-
point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
|
370 |
-
key="canvas",
|
371 |
-
)
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
with column1:
|
378 |
-
# prompt=st.text_area("Please provide the prompt")
|
379 |
-
prompt=st.chat_input("Please provide the prompt")
|
380 |
-
|
381 |
-
negative_prompt="the black masked area"
|
382 |
-
|
383 |
-
# run=st.button("run_experiment")
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
if canvas_result.image_data is not None:
|
388 |
-
if prompt:
|
389 |
-
|
390 |
-
text_or_image=multimodel_output(prompt)
|
391 |
-
|
392 |
-
if text_or_image=="LABEL_0":
|
393 |
-
|
394 |
-
if "generated_image_prompt" not in dictionary:
|
395 |
-
dictionary['generated_image_prompt']=[]
|
396 |
-
if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
|
397 |
-
dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
|
398 |
-
new_size=np.array(canvas_result.image_data).shape[:2]
|
399 |
-
new_size=(new_size[-1],new_size[0])
|
400 |
-
if bg_image!=dictionary["bg_image"] :
|
401 |
-
dictionary["bg_image"]=bg_image
|
402 |
-
if bg_image!=None:
|
403 |
-
imf=Image.open(bg_image).resize(new_size)
|
404 |
-
else:
|
405 |
-
with open("lotte_animation_saver/animation_4.json") as read:
|
406 |
-
url_json=json.load(read)
|
407 |
-
st_lottie(url_json)
|
408 |
-
imf=Image.open("ALL_image_formation\home_screen.jpg").resize(new_size)
|
409 |
-
else:
|
410 |
-
if len(dictionary['current_image'])!=0:
|
411 |
-
imf=dictionary['current_image'][0]
|
412 |
-
else:
|
413 |
-
with open("lotte_animation_saver/animation_4.json") as read:
|
414 |
-
url_json=json.load(read)
|
415 |
-
st_lottie(url_json)
|
416 |
-
imf=Image.open("ALL_image_formation\home_screen.jpg")
|
417 |
-
|
418 |
-
negative_image =d4_to_3d(np.array(canvas_result.image_data))
|
419 |
-
if np.sum(negative_image)==0:
|
420 |
-
negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
|
421 |
-
else:
|
422 |
-
negative_image=Image.fromarray(negative_image)
|
423 |
-
|
424 |
-
modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
|
425 |
-
modifiedValue.save("ALL_image_formation/current_session_image.png")
|
426 |
-
dictionary['current_image']=[modifiedValue]+dictionary['current_image']
|
427 |
-
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
428 |
-
st.rerun()
|
429 |
-
else:
|
430 |
-
st.write("nothing importent")
|
431 |
-
modifiedValue="@working"
|
432 |
-
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
433 |
-
st.rerun()
|
434 |
-
# st.image(modifiedValue,width=300)
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
if canvas_result.json_data is not None:
|
439 |
-
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
|
440 |
-
for col in objects.select_dtypes(include=['object']).columns:
|
441 |
-
objects[col] = objects[col].astype("str")
|
442 |
-
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from PIL import Image
|
3 |
+
import streamlit as st
|
4 |
+
import cv2
|
5 |
+
from streamlit_drawable_canvas import st_canvas
|
6 |
+
import torch
|
7 |
+
from diffusers import AutoPipelineForInpainting
|
8 |
+
import numpy as np
|
9 |
+
from streamlit_image_select import image_select
|
10 |
+
import os
|
11 |
+
import requests
|
12 |
+
from streamlit_navigation_bar import st_navbar
|
13 |
+
from langchain_community.llms import Ollama
|
14 |
+
import base64
|
15 |
+
from io import BytesIO
|
16 |
+
from PIL import Image, ImageDraw
|
17 |
+
from streamlit_lottie import st_lottie
|
18 |
+
from streamlit_option_menu import option_menu
|
19 |
+
import json
|
20 |
+
from transformers import pipeline
|
21 |
+
import streamlit as st
|
22 |
+
from streamlit_modal import Modal
|
23 |
+
import streamlit.components.v1 as components
|
24 |
+
from datetime import datetime
|
25 |
+
|
26 |
+
|
27 |
+
def image_to_base64(image_path):
|
28 |
+
with open(image_path, "rb") as img_file:
|
29 |
+
return base64.b64encode(img_file.read()).decode()
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache_resource
|
33 |
+
def load_model():
|
34 |
+
pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
|
35 |
+
return pipeline_
|
36 |
+
|
37 |
+
# @st.cache_resource
|
38 |
+
def prompt_improvment(pre_prompt):
|
39 |
+
|
40 |
+
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
41 |
+
enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
|
42 |
+
prompt = pre_prompt+"\n"+enhancement
|
43 |
+
# result = llm.invoke(prompt)
|
44 |
+
return llm.stream(prompt)
|
45 |
+
def numpy_to_list(array):
|
46 |
+
|
47 |
+
current=[]
|
48 |
+
for value in array:
|
49 |
+
if isinstance(value,type(np.array([]))):
|
50 |
+
result=numpy_to_list(value)
|
51 |
+
current.append(result)
|
52 |
+
else:
|
53 |
+
|
54 |
+
current.append(int(value))
|
55 |
+
return current
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
@st.cache_resource
|
60 |
+
def llm_text_response():
|
61 |
+
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
62 |
+
return llm.stream
|
63 |
+
|
64 |
+
def model_single_out(prompt):
|
65 |
+
pipe=load_model()
|
66 |
+
image = pipe(prompt).images[0]
|
67 |
+
return image
|
68 |
+
|
69 |
+
def model_out_put(init_image,mask_image,prompt,negative_prompt):
|
70 |
+
pipeline_ = load_model()
|
71 |
+
image = pipeline_(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
|
72 |
+
return image
|
73 |
+
|
74 |
+
@st.cache_resource
|
75 |
+
def multimodel():
|
76 |
+
pipeline_ = pipeline("text-classification", model = "model_collection\model_4")
|
77 |
+
return pipeline_
|
78 |
+
|
79 |
+
def multimodel_output(prompt):
|
80 |
+
pipeline_ = multimodel()
|
81 |
+
image = pipeline_(prompt)
|
82 |
+
return image[0]['label']
|
83 |
+
|
84 |
+
def d4_to_3d(image):
|
85 |
+
formatted_array=[]
|
86 |
+
for j in image:
|
87 |
+
neste_list=[]
|
88 |
+
for k in j:
|
89 |
+
if any([True if i>0 else False for i in k]):
|
90 |
+
neste_list.append(True)
|
91 |
+
else:
|
92 |
+
neste_list.append(False)
|
93 |
+
formatted_array.append(neste_list)
|
94 |
+
print(np.shape(formatted_array))
|
95 |
+
return np.array(formatted_array)
|
96 |
+
|
97 |
+
st.set_page_config(layout="wide")
|
98 |
+
|
99 |
+
st.write(str(os.getcwd()))
|
100 |
+
|
101 |
+
img_selection=None
|
102 |
+
# Specify canvas parameters in application
|
103 |
+
drawing_mode = st.sidebar.selectbox(
|
104 |
+
"Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
dictionary=st.session_state
|
109 |
+
if "every_prompt_with_val" not in dictionary:
|
110 |
+
dictionary['every_prompt_with_val']=[]
|
111 |
+
if "current_image" not in dictionary:
|
112 |
+
dictionary['current_image']=[]
|
113 |
+
if "prompt_collection" not in dictionary:
|
114 |
+
dictionary['prompt_collection']=[]
|
115 |
+
if "user" not in dictionary:
|
116 |
+
dictionary['user']=None
|
117 |
+
if "current_session" not in dictionary:
|
118 |
+
dictionary['current_session']=None
|
119 |
+
|
120 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
|
121 |
+
if drawing_mode == 'point':
|
122 |
+
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
|
123 |
+
stroke_color = '#000000'
|
124 |
+
bg_color = "#eee"
|
125 |
+
|
126 |
+
|
127 |
+
column1,column2=st.columns([0.7,0.35])
|
128 |
+
|
129 |
+
with open("\home\user\DataBase\datetimeRecords.json","r") as read:
|
130 |
+
dateTimeRecord=json.load(read)
|
131 |
+
with column2:
|
132 |
+
st.header("HISTORY")
|
133 |
+
tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
|
134 |
+
with tab1:
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
if not len(dictionary['every_prompt_with_val']):
|
139 |
+
st.header("I will store all the chat for the current session")
|
140 |
+
with open("lotte_animation_saver\\animation_4.json") as read:
|
141 |
+
url_json=json.load(read)
|
142 |
+
st_lottie(url_json,height = 400)
|
143 |
+
else:
|
144 |
+
|
145 |
+
with st.container(height=600):
|
146 |
+
|
147 |
+
|
148 |
+
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
|
149 |
+
if prompts_[-1]=="@working":
|
150 |
+
if index==0:
|
151 |
+
st.write(prompts_[0].upper())
|
152 |
+
data_need=st.write_stream(llm_text_response()(prompts_[0]))
|
153 |
+
dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
|
154 |
+
|
155 |
+
elif isinstance(prompts_[-1],str):
|
156 |
+
if index==0:
|
157 |
+
st.text_area(label=prompts_[0].upper(),value=prompts_[-1],height=500)
|
158 |
+
else:
|
159 |
+
st.text_area(label=prompts_[0].upper(),value=prompts_[-1])
|
160 |
+
|
161 |
+
else:
|
162 |
+
st.write(prompts_[0].upper())
|
163 |
+
with st.container(height=400):
|
164 |
+
format1,format2=st.columns([0.2,0.8])
|
165 |
+
with format1:
|
166 |
+
new_img=Image.open("ALL_image_formation\image_gen.png")
|
167 |
+
st.write("<br>",unsafe_allow_html=True)
|
168 |
+
size = min(new_img.size)
|
169 |
+
mask = Image.new('L', (size, size), 0)
|
170 |
+
draw = ImageDraw.Draw(mask)
|
171 |
+
draw.ellipse((0, 0, size, size), fill=255)
|
172 |
+
|
173 |
+
image = new_img.crop((0, 0, size, size))
|
174 |
+
image.putalpha(mask)
|
175 |
+
st.image(image)
|
176 |
+
with format2:
|
177 |
+
|
178 |
+
st.write("<br>",unsafe_allow_html=True)
|
179 |
+
size = min(prompts_[-1].size)
|
180 |
+
mask = Image.new('L', (size, size), 0)
|
181 |
+
draw = ImageDraw.Draw(mask)
|
182 |
+
draw.ellipse((0, 0, size, size), fill=255)
|
183 |
+
|
184 |
+
# Crop the image to a square and apply the mask
|
185 |
+
image = prompts_[-1].crop((0, 0, size, size))
|
186 |
+
image.putalpha(mask)
|
187 |
+
st.image(image)
|
188 |
+
|
189 |
+
with tab2:
|
190 |
+
|
191 |
+
if "current_image" in dictionary and len(dictionary['current_image']):
|
192 |
+
with st.container(height=600):
|
193 |
+
dictinory_length=len(dictionary['current_image'])
|
194 |
+
|
195 |
+
img_selection = image_select(
|
196 |
+
label="",
|
197 |
+
images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
|
198 |
+
)
|
199 |
+
if img_selection in dictionary['current_image']:
|
200 |
+
dictionary['current_image'].remove(img_selection)
|
201 |
+
dictionary['current_image'].insert(0,img_selection)
|
202 |
+
# st.rerun()
|
203 |
+
|
204 |
+
img_selection.save("image.png")
|
205 |
+
with open("image.png", "rb") as file:
|
206 |
+
downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
|
207 |
+
os.remove("image.png")
|
208 |
+
else:
|
209 |
+
|
210 |
+
st.header("This section will store the updated images")
|
211 |
+
with open("lotte_animation_saver\\animation_1.json") as read:
|
212 |
+
url_json=json.load(read)
|
213 |
+
st_lottie(url_json,height = 400)
|
214 |
+
with tab3:
|
215 |
+
if len(dictionary['prompt_collection'])!=0:
|
216 |
+
with st.container(height=600):
|
217 |
+
prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)
|
218 |
+
|
219 |
+
if prompt_selection!="Mention below are prompt history":
|
220 |
+
|
221 |
+
generated_prompt=prompt_improvment(prompt_selection)
|
222 |
+
dictionary['generated_image_prompt'].append(generated_prompt)
|
223 |
+
st.write_stream(generated_prompt)
|
224 |
+
|
225 |
+
else:
|
226 |
+
|
227 |
+
st.header("This section will provide prompt improvement section")
|
228 |
+
with open("lotte_animation_saver\\animation_3.json") as read:
|
229 |
+
url_json=json.load(read)
|
230 |
+
st_lottie(url_json,height = 400)
|
231 |
+
with tab4:
|
232 |
+
|
233 |
+
# with st.container(height=600):
|
234 |
+
|
235 |
+
if not dictionary['user'] :
|
236 |
+
with st.form("my_form"):
|
237 |
+
# st.header("Please login for save your data")
|
238 |
+
with open("lotte_animation_saver\\animation_5.json") as read:
|
239 |
+
url_json=json.load(read)
|
240 |
+
st_lottie(url_json,height = 200)
|
241 |
+
user_id = st.text_input("user login")
|
242 |
+
password = st.text_input("password",type="password")
|
243 |
+
submitted_login = st.form_submit_button("Submit")
|
244 |
+
# Every form must have a submit button.
|
245 |
+
|
246 |
+
if submitted_login:
|
247 |
+
with open("DataBase\login.json","r") as read:
|
248 |
+
login_base=json.load(read)
|
249 |
+
if user_id in login_base and login_base[user_id]==password:
|
250 |
+
dictionary['user']=user_id
|
251 |
+
st.rerun()
|
252 |
+
else:
|
253 |
+
st.error("userid or password incorrect")
|
254 |
+
|
255 |
+
st.write("working")
|
256 |
+
modal = Modal(
|
257 |
+
"Sign up",
|
258 |
+
key="demo-modal",
|
259 |
+
|
260 |
+
padding=10, # default value
|
261 |
+
max_width=600 # default value
|
262 |
+
)
|
263 |
+
open_modal = st.button("sign up")
|
264 |
+
if open_modal:
|
265 |
+
modal.open()
|
266 |
+
|
267 |
+
if modal.is_open():
|
268 |
+
with modal.container():
|
269 |
+
|
270 |
+
with st.form("my_form1"):
|
271 |
+
sign_up_column_left,sign_up_column_right=st.columns(2)
|
272 |
+
with sign_up_column_left:
|
273 |
+
with open("lotte_animation_saver\\animation_6.json") as read:
|
274 |
+
url_json=json.load(read)
|
275 |
+
st_lottie(url_json,height = 200)
|
276 |
+
|
277 |
+
with sign_up_column_right:
|
278 |
+
user_id = st.text_input("user login")
|
279 |
+
password = st.text_input("password",type="password")
|
280 |
+
submitted_signup = st.form_submit_button("Submit")
|
281 |
+
|
282 |
+
if submitted_signup:
|
283 |
+
with open("DataBase\login.json","r") as read:
|
284 |
+
login_base=json.load(read)
|
285 |
+
if not login_base:
|
286 |
+
login_base={}
|
287 |
+
if user_id not in login_base:
|
288 |
+
login_base[user_id]=password
|
289 |
+
with open("DataBase\login.json","w") as write:
|
290 |
+
json.dump(login_base,write,indent=2)
|
291 |
+
st.success("you are a part now")
|
292 |
+
dictionary['user']=user_id
|
293 |
+
modal.close()
|
294 |
+
else:
|
295 |
+
st.error("user id already exists")
|
296 |
+
else:
|
297 |
+
st.header("REPORTED ISSUES")
|
298 |
+
with st.container(height=370):
|
299 |
+
|
300 |
+
with open("DataBase\datetimeRecords.json") as feedback:
|
301 |
+
temp_issue=json.load(feedback)
|
302 |
+
|
303 |
+
arranged_feedback=reversed(temp_issue['database'])
|
304 |
+
|
305 |
+
for report in arranged_feedback:
|
306 |
+
user_columns,user_feedback=st.columns([0.3,0.8])
|
307 |
+
|
308 |
+
with user_columns:
|
309 |
+
st.write(report[-1])
|
310 |
+
with user_feedback:
|
311 |
+
st.write(report[1])
|
312 |
+
|
313 |
+
feedback=st.text_area("Feedback Report and Improvement",placeholder="")
|
314 |
+
summit=st.button("submit")
|
315 |
+
if summit:
|
316 |
+
with open("DataBase\datetimeRecords.json","r") as feedback_sumit:
|
317 |
+
temp_issue_submit=json.load(feedback_sumit)
|
318 |
+
if "database" not in temp_issue_submit:
|
319 |
+
temp_issue_submit["database"]=[]
|
320 |
+
temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user']))
|
321 |
+
with open("DataBase\datetimeRecords.json","w") as feedback_sumit:
|
322 |
+
json.dump(temp_issue_submit,feedback_sumit)
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
# st.rerun()
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
|
334 |
+
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])
|
335 |
+
|
336 |
+
|
337 |
+
if "bg_image" not in dictionary:
|
338 |
+
dictionary["bg_image"]=None
|
339 |
+
|
340 |
+
if img_selection and dictionary['bg_image']==bg_image:
|
341 |
+
gen_image=dictionary['current_image'][0]
|
342 |
+
else:
|
343 |
+
if bg_image:
|
344 |
+
gen_image=Image.open(bg_image)
|
345 |
+
else:
|
346 |
+
gen_image=None
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
with column1:
|
354 |
+
# Create a canvas component
|
355 |
+
changes,implementation,current=st.columns([0.3,0.6,0.3])
|
356 |
+
|
357 |
+
with implementation:
|
358 |
+
st.write("<br>"*5,unsafe_allow_html=True)
|
359 |
+
canvas_result = st_canvas(
|
360 |
+
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
|
361 |
+
stroke_width=stroke_width,
|
362 |
+
stroke_color=stroke_color,
|
363 |
+
background_color=bg_color,
|
364 |
+
background_image=gen_image if gen_image else Image.open("ALL_image_formation\image_gen.png"),
|
365 |
+
update_streamlit=True,
|
366 |
+
height=500,
|
367 |
+
width=500,
|
368 |
+
drawing_mode=drawing_mode,
|
369 |
+
point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
|
370 |
+
key="canvas",
|
371 |
+
)
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
with column1:
|
378 |
+
# prompt=st.text_area("Please provide the prompt")
|
379 |
+
prompt=st.chat_input("Please provide the prompt")
|
380 |
+
|
381 |
+
negative_prompt="the black masked area"
|
382 |
+
|
383 |
+
# run=st.button("run_experiment")
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
if canvas_result.image_data is not None:
|
388 |
+
if prompt:
|
389 |
+
|
390 |
+
text_or_image=multimodel_output(prompt)
|
391 |
+
|
392 |
+
if text_or_image=="LABEL_0":
|
393 |
+
|
394 |
+
if "generated_image_prompt" not in dictionary:
|
395 |
+
dictionary['generated_image_prompt']=[]
|
396 |
+
if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
|
397 |
+
dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
|
398 |
+
new_size=np.array(canvas_result.image_data).shape[:2]
|
399 |
+
new_size=(new_size[-1],new_size[0])
|
400 |
+
if bg_image!=dictionary["bg_image"] :
|
401 |
+
dictionary["bg_image"]=bg_image
|
402 |
+
if bg_image!=None:
|
403 |
+
imf=Image.open(bg_image).resize(new_size)
|
404 |
+
else:
|
405 |
+
with open("lotte_animation_saver/animation_4.json") as read:
|
406 |
+
url_json=json.load(read)
|
407 |
+
st_lottie(url_json)
|
408 |
+
imf=Image.open("ALL_image_formation\home_screen.jpg").resize(new_size)
|
409 |
+
else:
|
410 |
+
if len(dictionary['current_image'])!=0:
|
411 |
+
imf=dictionary['current_image'][0]
|
412 |
+
else:
|
413 |
+
with open("lotte_animation_saver/animation_4.json") as read:
|
414 |
+
url_json=json.load(read)
|
415 |
+
st_lottie(url_json)
|
416 |
+
imf=Image.open("ALL_image_formation\home_screen.jpg")
|
417 |
+
|
418 |
+
negative_image =d4_to_3d(np.array(canvas_result.image_data))
|
419 |
+
if np.sum(negative_image)==0:
|
420 |
+
negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
|
421 |
+
else:
|
422 |
+
negative_image=Image.fromarray(negative_image)
|
423 |
+
|
424 |
+
modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
|
425 |
+
modifiedValue.save("ALL_image_formation/current_session_image.png")
|
426 |
+
dictionary['current_image']=[modifiedValue]+dictionary['current_image']
|
427 |
+
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
428 |
+
st.rerun()
|
429 |
+
else:
|
430 |
+
st.write("nothing importent")
|
431 |
+
modifiedValue="@working"
|
432 |
+
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
433 |
+
st.rerun()
|
434 |
+
# st.image(modifiedValue,width=300)
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
if canvas_result.json_data is not None:
|
439 |
+
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
|
440 |
+
for col in objects.select_dtypes(include=['object']).columns:
|
441 |
+
objects[col] = objects[col].astype("str")
|
442 |
+
|