warhawkmonk commited on
Commit
b03ba24
·
verified ·
1 Parent(s): cfc2604

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -4,7 +4,7 @@ import streamlit as st
4
  import cv2
5
  from streamlit_drawable_canvas import st_canvas
6
  import torch
7
- torch.classes.__path__ = []
8
  from diffusers import AutoPipelineForInpainting
9
  import numpy as np
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
@@ -34,7 +34,7 @@ from streamlit_pdf_viewer import pdf_viewer
34
 
35
 
36
 
37
- dictionary=st.session_state
38
  def consume_llm_api(prompt):
39
  """
40
  Sends a prompt to the LLM API and processes the streamed response.
@@ -205,7 +205,7 @@ def d4_to_3d(image):
205
  return np.array(formatted_array)
206
 
207
  st.set_page_config(layout="wide")
208
-
209
  # st.write(str(os.getcwd()))
210
  screen_width = streamlit_js_eval(label="screen.width",js_expressions='screen.width')
211
  screen_height = streamlit_js_eval(label="screen.height",js_expressions='screen.height')
@@ -543,7 +543,7 @@ with st.spinner('Wait for it...'):
543
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=100)
544
  chunks = text_splitter.split_documents(data)
545
 
546
- dictionary['text_embeddings'][str(data)]={str(chunk.page_content):model.encode(str(chunk.page_content)) for chunk in chunks}
547
 
548
  embeddings = [dictionary['text_embeddings'][str(data)][i] for i in dictionary['text_embeddings'][str(data)]]
549
  vector_store = []
 
4
  import cv2
5
  from streamlit_drawable_canvas import st_canvas
6
  import torch
7
+ import numpy as np
8
  from diffusers import AutoPipelineForInpainting
9
  import numpy as np
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
34
 
35
 
36
 
37
+
38
  def consume_llm_api(prompt):
39
  """
40
  Sends a prompt to the LLM API and processes the streamed response.
 
205
  return np.array(formatted_array)
206
 
207
  st.set_page_config(layout="wide")
208
+ dictionary=st.session_state
209
  # st.write(str(os.getcwd()))
210
  screen_width = streamlit_js_eval(label="screen.width",js_expressions='screen.width')
211
  screen_height = streamlit_js_eval(label="screen.height",js_expressions='screen.height')
 
543
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=100)
544
  chunks = text_splitter.split_documents(data)
545
 
546
+ dictionary['text_embeddings'][str(data)]={str(chunk.page_content):np.array(model.encode(str(chunk.page_content))) for chunk in chunks}
547
 
548
  embeddings = [dictionary['text_embeddings'][str(data)][i] for i in dictionary['text_embeddings'][str(data)]]
549
  vector_store = []