Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, VitsModel | |
import torch | |
import numpy as np | |
import os | |
import noisereduce as nr | |
import base64 | |
import io | |
import soundfile as sf | |
# قراءة التوكن من Secrets | |
token = os.getenv("acees-token") | |
# تخزين النماذج | |
models = {} | |
# اختيار الجهاز | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# إزالة الضوضاء | |
def remove_noise(audio_data, sr=16000): | |
return nr.reduce_noise(y=audio_data, hop_length=256, sr=sr) | |
# تحميل النموذج | |
def get_model(name_model): | |
global models | |
if name_model in models: | |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token) | |
return models[name_model], tokenizer | |
model = VitsModel.from_pretrained(name_model, token=token) | |
model.decoder.apply_weight_norm() | |
for flow in model.flow.flows: | |
torch.nn.utils.weight_norm(flow.conv_pre) | |
torch.nn.utils.weight_norm(flow.conv_post) | |
model.to(device) | |
models[name_model] = model | |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token) | |
return model, tokenizer | |
# نموذج البيانات للـ POST | |
class TTSRequest(BaseModel): | |
text: str | |
name_model: str = "wasmdashai/vits-ar-sa-huba-v2" | |
speaking_rate: float = 16000.0 | |
# إنشاء التطبيق | |
app = FastAPI(title="VITS TTS API", description="Convert Arabic/English text to speech using VITS models") | |
def home(): | |
return {"message": "FastAPI VITS TTS service is running"} | |
def modelspeech(req: TTSRequest): | |
try: | |
model, tokenizer = get_model(req.name_model) | |
inputs = tokenizer(req.text, return_tensors="pt").to(device) | |
model.speaking_rate = req.speaking_rate | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
waveform = outputs.waveform[0].cpu().numpy() | |
# إزالة الضوضاء | |
waveform = remove_noise(waveform) | |
# تحويل الصوت إلى Base64 WAV | |
buffer = io.BytesIO() | |
sf.write(buffer, waveform, samplerate=model.config.sampling_rate, format="WAV") | |
buffer.seek(0) | |
audio_base64 = base64.b64encode(buffer.read()).decode("utf-8") | |
return { | |
"sampling_rate": model.config.sampling_rate, | |
"audio_base64": audio_base64 | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |