File size: 12,123 Bytes
3ed743d 97c08be 3ed743d e2f8807 7909335 e2f8807 3ed743d e2f8807 7909335 e2f8807 7909335 e2f8807 7909335 20a91f5 7909335 e2f8807 7909335 3ed743d e2f8807 7909335 e2f8807 b3e34bb 7909335 0eb1d72 7909335 0eb1d72 7909335 b3e34bb 7909335 e2f8807 7909335 3ed743d 7909335 e2f8807 3ed743d 7909335 3ed743d 7909335 3ed743d 7909335 0eb1d72 7909335 1edd0d1 7909335 9609416 7909335 c74f0f8 7909335 3ed743d 7909335 e2f8807 7909335 3ed743d 7909335 30e4b45 3ed743d e2f8807 7909335 e260821 10a86f6 7909335 88239ef e260821 7909335 e260821 7909335 e260821 b3e34bb 10a86f6 a4c117a 9609416 3ed743d 7909335 e260821 7909335 b3e34bb 7909335 e260821 7909335 e260821 7909335 61262ab 7909335 d672f21 a7aabe3 7909335 d672f21 e2f8807 3ed743d 7909335 e2f8807 3ed743d 7909335 35ec0b9 3ed743d 7909335 20a91f5 7909335 20a91f5 7909335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import requests
import json
import time
import threading
import uuid
import shutil
from datetime import datetime
from pathlib import Path
from http.server import HTTPServer, SimpleHTTPRequestHandler
import base64
from dotenv import load_dotenv
import gradio as gr
import random
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from functools import lru_cache
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {
0: "✅ SAFE",
1: "⚠️ QUESTIONABLE",
2: "🚫 UNSAFE"
}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 8:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as f:
ext = Path(file_path).suffix.lower()[1:]
mime_map = {'jpg':'jpeg','jpeg':'jpeg','png':'png','webp':'webp','gif':'gif'}
mime = mime_map.get(ext, 'jpeg')
encoded = base64.b64encode(f.read())
if len(encoded) % 4:
encoded += b'=' * (4 - len(encoded) % 4)
return f"data:image/{mime};base64,{encoded.decode()}"
except Exception as e:
raise ValueError(f"Base64 Error: {str(e)}")
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
@lru_cache(maxsize=100)
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def generate_video(
image,
prompt,
duration,
enable_safety,
flow_shift,
guidance,
negative_prompt,
steps,
seed,
size,
session_id
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("Hourly limit exceeded (20 requests)")
yield "❌ 请求过于频繁,请稍后再试", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
try:
api_key = os.getenv("WAVESPEED_API_KEY")
if not api_key:
raise ValueError("API key missing")
base64_img = image_to_base64(image)
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
guidance_scale = guidance
inference_steps = steps
payload = {
"image": base64_img,
"enable_safety_checker": True,
"prompt": prompt,
"duration": duration,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"negative_prompt": negative_prompt,
"num_inference_steps": inference_steps,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": "832*480"
}
# 提交任务
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast",
headers=headers,
json=payload
)
if response.status_code != 200:
raise Exception(f"API Error {response.status_code}: {response.text}")
request_id = response.json()["data"]["id"]
yield f"✅ 任务已提交 (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 提交失败: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(1)
try:
resp = requests.get(result_url, headers=headers)
if resp.status_code != 200:
raise Exception(f"状态查询失败: {resp.text}")
data = resp.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data["outputs"][0]
session["history"].append(video_url)
yield f"🎉 生成成功! 耗时 {elapsed:.1f}s", video_url
return
elif status == "failed":
raise Exception(data.get("error", "Unknown error"))
else:
yield f"⏳ 当前状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 生成失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI")
gr.Markdown("""
[WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation.
Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.
""")
gr.Markdown("""
The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity.
""")
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(type="filepath", label="Upload Image")
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Prompt...")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
with gr.Row():
size = gr.Dropdown(["832*480", "480*832"], value="832*480", interactive=True, label="Resolution")
steps = gr.Slider(1, 50, value=30, label="Inference Steps")
with gr.Row():
duration = gr.Slider(1, 10, value=5, step=1, label="时长(秒)")
guidance = gr.Slider(1, 20, value=7, label="Guidance Scale")
with gr.Row():
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
with gr.Row():
enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",value=True, interactive=False)
flow_shift = gr.Number(3, label="Flow Shift",interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Video", format="mp4", elem_classes=["video-preview"])
status_output = gr.Textbox(label="System Status", interactive=False, lines=4)
generate_btn = gr.Button("Generated", variant="primary")
# with gr.Accordion("Generation History", open=False):
# history_gallery = gr.Gallery(label="History", columns=3)
with gr.Accordion("Safety Status", open=True):
gr.Markdown("""
<div class="status-box safe">
✅ Content safety check passed
</div>
""")
gr.Examples(
examples=[
[
"Victorian era, 19th-century gentleman wearing a black top hat and tuxedo, standing on a cobblestone street, dim gaslight lamps, passersby in vintage clothing, gentle breeze moving his coat, slow cinematic pan around him, nostalgic retro film style, realistic textures",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745725874603980753_95mFCAxu.jpg"
],
[
"A cyberpunk female warrior with short silver hair and glowing green eyes, wearing a futuristic armored suit, standing in a neon-lit rainy city street, camera slowly circling around her, raindrops falling in slow motion, neon reflections on wet pavement, cinematic atmosphere, highly detailed, ultra realistic, 4K",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745726299175719855_pFO0WSRM.jpg"
],
[
"Wide shot of a brave medieval female knight in shining silver armor and a red cape, standing on a castle rooftop at sunset, slowly drawing a large ornate sword from its scabbard, seen from a distance with the vast castle and surrounding landscape in the background, golden light bathing the scene, hair and cape flowing gently in the wind, cinematic epic atmosphere, dynamic motion, majestic clouds drifting, ultra realistic, high fantasy world, 4K ultra-detailed",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745727436576834405_rtsokheb.jpg"
]
],
inputs=[prompt, img_input],
label="Example Inputs",
examples_per_page=3
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
img_input,
prompt,
duration,
enable_safety,
flow_shift,
guidance,
negative_prompt,
steps,
seed,
size,
session_id
],
outputs=[
status_output,
video_output
]
)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=2).launch(
server_name="0.0.0.0",
max_threads=4,
share=False
) |