File size: 12,123 Bytes
3ed743d
 
 
 
 
97c08be
3ed743d
 
 
 
 
 
 
 
e2f8807
7909335
e2f8807
 
3ed743d
 
 
e2f8807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7909335
 
 
e2f8807
 
 
 
 
 
 
7909335
e2f8807
 
 
 
 
7909335
 
 
 
 
 
 
 
 
 
 
 
 
 
20a91f5
7909335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2f8807
 
7909335
3ed743d
e2f8807
 
 
7909335
 
 
 
e2f8807
 
 
b3e34bb
7909335
 
 
 
 
 
 
 
 
 
 
 
 
0eb1d72
7909335
0eb1d72
7909335
 
 
 
b3e34bb
7909335
e2f8807
7909335
 
3ed743d
 
7909335
 
 
e2f8807
3ed743d
7909335
 
 
 
3ed743d
7909335
 
 
3ed743d
7909335
 
 
0eb1d72
 
 
7909335
 
1edd0d1
7909335
 
9609416
7909335
 
 
 
c74f0f8
7909335
3ed743d
7909335
 
 
 
 
 
 
 
 
 
 
 
 
e2f8807
 
7909335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed743d
7909335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e4b45
 
 
 
 
 
 
 
3ed743d
e2f8807
7909335
e260821
 
 
10a86f6
7909335
88239ef
e260821
7909335
 
e260821
7909335
e260821
b3e34bb
10a86f6
a4c117a
9609416
3ed743d
7909335
e260821
 
 
7909335
b3e34bb
 
7909335
e260821
7909335
 
e260821
7909335
61262ab
7909335
 
d672f21
 
 
 
 
 
 
 
 
 
 
 
a7aabe3
7909335
d672f21
 
e2f8807
3ed743d
7909335
 
 
 
e2f8807
3ed743d
7909335
35ec0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed743d
 
 
7909335
20a91f5
7909335
20a91f5
7909335
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import requests
import json
import time
import threading
import uuid
import shutil
from datetime import datetime
from pathlib import Path
from http.server import HTTPServer, SimpleHTTPRequestHandler
import base64
from dotenv import load_dotenv
import gradio as gr
import random
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from functools import lru_cache

load_dotenv()

MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {
    0: "✅ SAFE",
    1: "⚠️ QUESTIONABLE",
    2: "🚫 UNSAFE"
}

tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)

class SessionManager:
    _instances = {}
    _lock = threading.Lock()

    @classmethod
    def get_session(cls, session_id):
        with cls._lock:
            if session_id not in cls._instances:
                cls._instances[session_id] = {
                    'count': 0,
                    'history': [],
                    'last_active': time.time()
                }
            return cls._instances[session_id]

    @classmethod
    def cleanup_sessions(cls):
        with cls._lock:
            now = time.time()
            expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
            for k in expired:
                del cls._instances[k]

class RateLimiter:
    def __init__(self):
        self.clients = {}
        self.lock = threading.Lock()

    def check(self, client_id):
        with self.lock:
            now = time.time()
            if client_id not in self.clients:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
                
            if now > self.clients[client_id]['reset']:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
                
            if self.clients[client_id]['count'] >= 8:
                return False
                
            self.clients[client_id]['count'] += 1
            return True

session_manager = SessionManager()
rate_limiter = RateLimiter()

def image_to_base64(file_path):
    try:
        with open(file_path, "rb") as f:
            ext = Path(file_path).suffix.lower()[1:]
            mime_map = {'jpg':'jpeg','jpeg':'jpeg','png':'png','webp':'webp','gif':'gif'}
            mime = mime_map.get(ext, 'jpeg')
            
            encoded = base64.b64encode(f.read())
            if len(encoded) % 4:
                encoded += b'=' * (4 - len(encoded) % 4)
                
            return f"data:image/{mime};base64,{encoded.decode()}"
    except Exception as e:
        raise ValueError(f"Base64 Error: {str(e)}")

def create_error_image(message):
    img = Image.new("RGB", (832, 480), "#ffdddd")
    try:
        font = ImageFont.truetype("arial.ttf", 24)
    except:
        font = ImageFont.load_default()
        
    draw = ImageDraw.Draw(img)
    text = f"Error: {message[:60]}..." if len(message) > 60 else message
    draw.text((50, 200), text, fill="#ff0000", font=font)
    img.save("error.jpg")
    return "error.jpg"


@lru_cache(maxsize=100)
def classify_prompt(prompt):
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
    return torch.argmax(outputs.logits).item()

def generate_video(
    image,
    prompt,
    duration,
    enable_safety,
    flow_shift,
    guidance,
    negative_prompt,
    steps,
    seed,
    size,
    session_id
):

    safety_level = classify_prompt(prompt)
    if safety_level != 0:
        error_img = create_error_image(CLASS_NAMES[safety_level])
        yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
        return

    if not rate_limiter.check(session_id):
        error_img = create_error_image("Hourly limit exceeded (20 requests)")
        yield "❌ 请求过于频繁,请稍后再试", error_img
        return

    session = session_manager.get_session(session_id)
    session['last_active'] = time.time()
    session['count'] += 1

    try:
        api_key = os.getenv("WAVESPEED_API_KEY")
        if not api_key:
            raise ValueError("API key missing")
            
        base64_img = image_to_base64(image)
        headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
        
        guidance_scale = guidance
        inference_steps = steps
        
        payload = {
            "image": base64_img,
            "enable_safety_checker": True,
            "prompt": prompt,
            "duration": duration,
            "flow_shift": flow_shift,
            "guidance_scale": guidance_scale,
            "negative_prompt": negative_prompt,
            "num_inference_steps": inference_steps,
            "seed": seed if seed != -1 else random.randint(0, 999999),
            "size": "832*480"
        }

        # 提交任务
        response = requests.post(
            "https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1/i2v-480p-ultra-fast",
            headers=headers,
            json=payload
        )
        
        if response.status_code != 200:
            raise Exception(f"API Error {response.status_code}: {response.text}")
            
        request_id = response.json()["data"]["id"]
        yield f"✅ 任务已提交 (ID: {request_id})", None
        
    except Exception as e:
        error_img = create_error_image(str(e))
        yield f"❌ 提交失败: {str(e)}", error_img
        return

    result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
    start_time = time.time()
    
    while True:
        time.sleep(1)
        try:
            resp = requests.get(result_url, headers=headers)
            if resp.status_code != 200:
                raise Exception(f"状态查询失败: {resp.text}")
                
            data = resp.json()["data"]
            status = data["status"]
            
            if status == "completed":
                elapsed = time.time() - start_time
                video_url = data["outputs"][0]
                session["history"].append(video_url)
                yield f"🎉 生成成功! 耗时 {elapsed:.1f}s", video_url
                return
                
            elif status == "failed":
                raise Exception(data.get("error", "Unknown error"))
                
            else:
                yield f"⏳ 当前状态: {status.capitalize()}...", None
                
        except Exception as e:
            error_img = create_error_image(str(e))
            yield f"❌ 生成失败: {str(e)}", error_img
            return

def cleanup_task():
    while True:
        session_manager.cleanup_sessions()
        time.sleep(3600)

with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
    .video-preview { max-width: 600px !important; }
    .status-box { padding: 10px; border-radius: 5px; margin: 5px; }
    .safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
    .warning { background: #fff3e0; border: 1px solid #ffcc80; }
    .error { background: #ffebee; border: 1px solid #ef9a9a; }
    """
) as app:
    
    session_id = gr.State(str(uuid.uuid4()))
    
    gr.Markdown("# 🌊 Wan-2.1-i2v-480p-Ultra-Fast Run On WaveSpeedAI")
    gr.Markdown("""
        [WaveSpeedAI](https://wavespeed.ai/) is the global pioneer in accelerating AI-powered video and image generation.
        Our in-house inference accelerator provides lossless speedup on image & video generation based on our rich inference optimization software stack, including our in-house inference compiler, CUDA kernel libraries and parallel computing libraries.
        """)
    gr.Markdown("""
        The Wan2.1 14B model is an advanced image-to-video model that offers accelerated inference capabilities, enabling high-res video generation with high visual quality and motion diversity.
        """)
    
    with gr.Row():
        with gr.Column(scale=1):
            img_input = gr.Image(type="filepath", label="Upload Image")
            prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Prompt...")
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
            
            with gr.Row():
                size = gr.Dropdown(["832*480", "480*832"], value="832*480", interactive=True, label="Resolution")
                steps = gr.Slider(1, 50, value=30, label="Inference Steps")
            with gr.Row():
                duration = gr.Slider(1, 10, value=5, step=1, label="时长(秒)")
                guidance = gr.Slider(1, 20, value=7, label="Guidance Scale")
            with gr.Row():
                seed = gr.Number(-1, label="Seed")
                random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
            with gr.Row():
                enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",value=True, interactive=False)
                flow_shift = gr.Number(3, label="Flow Shift",interactive=False)
                
        with gr.Column(scale=1):
            video_output = gr.Video(label="Generated Video", format="mp4", elem_classes=["video-preview"])
            status_output = gr.Textbox(label="System Status", interactive=False, lines=4)
            generate_btn = gr.Button("Generated", variant="primary")
            
 #           with gr.Accordion("Generation History", open=False):
 #               history_gallery = gr.Gallery(label="History", columns=3)
                
            with gr.Accordion("Safety Status", open=True):
                gr.Markdown("""
                <div class="status-box safe">
                    ✅ Content safety check passed
                </div>
                """)         
    gr.Examples(
        examples=[
            [
                "Victorian era, 19th-century gentleman wearing a black top hat and tuxedo, standing on a cobblestone street, dim gaslight lamps, passersby in vintage clothing, gentle breeze moving his coat, slow cinematic pan around him, nostalgic retro film style, realistic textures",
                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745725874603980753_95mFCAxu.jpg"
            ],
            [
                "A cyberpunk female warrior with short silver hair and glowing green eyes, wearing a futuristic armored suit, standing in a neon-lit rainy city street, camera slowly circling around her, raindrops falling in slow motion, neon reflections on wet pavement, cinematic atmosphere, highly detailed, ultra realistic, 4K",
                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745726299175719855_pFO0WSRM.jpg"
            ],
            [
                "Wide shot of a brave medieval female knight in shining silver armor and a red cape, standing on a castle rooftop at sunset, slowly drawing a large ornate sword from its scabbard, seen from a distance with the vast castle and surrounding landscape in the background, golden light bathing the scene, hair and cape flowing gently in the wind, cinematic epic atmosphere, dynamic motion, majestic clouds drifting, ultra realistic, high fantasy world, 4K ultra-detailed",
                "https://d2g64w682n9w0w.cloudfront.net/media/images/1745727436576834405_rtsokheb.jpg"
            ]
        ],
        inputs=[prompt, img_input],
        label="Example Inputs",
        examples_per_page=3
    )

    random_seed_btn.click(
        fn=lambda: random.randint(0, 999999),
        outputs=seed
    )
    
    generate_btn.click(
        generate_video,
        inputs=[
        img_input,
        prompt,
        duration,
        enable_safety,
        flow_shift,
        guidance,
        negative_prompt,
        steps,
        seed,
        size,
        session_id 
    ],
        outputs=[
            status_output, 
            video_output
        ]
    )

if __name__ == "__main__":
    threading.Thread(target=cleanup_task, daemon=True).start()
    app.queue(max_size=2).launch(
        server_name="0.0.0.0",
        max_threads=4,
        share=False
    )