|
|
|
import torch |
|
import torch.nn.functional as F |
|
from typing import Optional |
|
from diffusers.models.attention_processor import Attention |
|
|
|
class WanAttnProcessor2_0: |
|
def __init__(self, scale=4, attn_mask=None, neg_prompt_length=0): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") |
|
self.attn_mask = attn_mask |
|
self.neg_prompt_length = neg_prompt_length |
|
self.scale = scale |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
rotary_emb: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
encoder_hidden_states_img = None |
|
if attn.add_k_proj is not None: |
|
|
|
image_context_length = encoder_hidden_states.shape[1] - 512 |
|
encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length] |
|
encoder_hidden_states = encoder_hidden_states[:, image_context_length:] |
|
cross_attn = False |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
else: |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
cross_attn = True |
|
|
|
if cross_attn and self.pos: |
|
|
|
value[:,-self.neg_prompt_length:] *= -self.scale |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) |
|
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) |
|
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) |
|
|
|
|
|
if rotary_emb is not None: |
|
def apply_rotary_emb( |
|
hidden_states: torch.Tensor, |
|
freqs_cos: torch.Tensor, |
|
freqs_sin: torch.Tensor, |
|
): |
|
x = hidden_states.view(*hidden_states.shape[:-1], -1, 2) |
|
x1, x2 = x[..., 0], x[..., 1] |
|
cos = freqs_cos[..., 0::2] |
|
sin = freqs_sin[..., 1::2] |
|
out = torch.empty_like(hidden_states) |
|
out[..., 0::2] = x1 * cos - x2 * sin |
|
out[..., 1::2] = x1 * sin + x2 * cos |
|
return out.type_as(hidden_states) |
|
|
|
query = apply_rotary_emb(query, *rotary_emb) |
|
key = apply_rotary_emb(key, *rotary_emb) |
|
|
|
|
|
hidden_states_img = None |
|
if encoder_hidden_states_img is not None: |
|
key_img = attn.add_k_proj(encoder_hidden_states_img) |
|
key_img = attn.norm_added_k(key_img) |
|
value_img = attn.add_v_proj(encoder_hidden_states_img) |
|
|
|
key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) |
|
value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) |
|
print(query.shape, key_img.shape, value_img.shape) |
|
hidden_states_img = F.scaled_dot_product_attention( |
|
query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) |
|
hidden_states_img = hidden_states_img.type_as(query) |
|
|
|
if self.attn_mask is not None: |
|
self.attn_mask = self.attn_mask.to(query.dtype) |
|
if not self.pos: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, dropout_p=0.0, is_causal=False |
|
) |
|
else: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=self.attn_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) |
|
hidden_states = hidden_states.type_as(query) |
|
|
|
if hidden_states_img is not None: |
|
hidden_states = hidden_states + hidden_states_img |
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
hidden_states = attn.to_out[1](hidden_states) |
|
return hidden_states |