File size: 6,442 Bytes
69a0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import {
  AutoProcessor,
  MultiModalityCausalLM,
  BaseStreamer,
  TextStreamer,
  InterruptableStoppingCriteria,
} from "@huggingface/transformers";

// Define constants
const IMAGE_GENERATION_COMMAND_PREFIX = "/imagine ";
const MAX_NEW_TEXT_TOKENS = 1024;

/**
 * Helper function to perform WebGPU feature detection
 */
let fp16_supported = false;
async function check() {
  try {
    const adapter = await navigator.gpu.requestAdapter();
    if (!adapter) {
      throw new Error("WebGPU is not supported (no adapter found)");
    }
    fp16_supported = adapter.features.has("shader-f16");
    self.postMessage({
      status: "success",
      data: fp16_supported,
    });
  } catch (e) {
    self.postMessage({
      status: "error",
      data: e.toString(),
    });
  }
}

/**
 * This class uses the Singleton pattern to enable lazy-loading of the pipeline
 */
class ImageGenerationPipeline {
  static model_id = "onnx-community/Janus-1.3B-ONNX";

  static async getInstance(progress_callback = null) {
    this.processor ??= AutoProcessor.from_pretrained(this.model_id, {
      progress_callback,
    });

    this.model ??= MultiModalityCausalLM.from_pretrained(this.model_id, {
      dtype: fp16_supported
        ? {
            prepare_inputs_embeds: "q4",
            language_model: "q4f16",
            lm_head: "fp16",
            gen_head: "fp16",
            gen_img_embeds: "fp16",
            image_decode: "fp32",
          }
        : {
            prepare_inputs_embeds: "fp32",
            language_model: "q4",
            lm_head: "fp32",
            gen_head: "fp32",
            gen_img_embeds: "fp32",
            image_decode: "fp32",
          },
      device: {
        prepare_inputs_embeds: "wasm", // TODO use "webgpu" when bug is fixed
        language_model: "webgpu",
        lm_head: "webgpu",
        gen_head: "webgpu",
        gen_img_embeds: "webgpu",
        image_decode: "webgpu",
      },
      progress_callback,
    });

    return Promise.all([this.processor, this.model]);
  }
}

class ProgressStreamer extends BaseStreamer {
  constructor(total, on_progress) {
    super();
    this.total = total;
    this.on_progress = on_progress;

    this.count = null;
    this.start_time = null;
  }

  put(value) {
    if (this.count === null) {
      // Ignore the first batch of tokens (prompt)
      this.count = 0;
      this.start_time = performance.now();
      return;
    }

    const progress = ++this.count / this.total;

    this.on_progress({
      count: this.count,
      total: this.total,
      progress,
      time: performance.now() - this.start_time,
    });
  }

  end() {
    /* no nothing */
  }
}

const stopping_criteria = new InterruptableStoppingCriteria();

async function generate(messages) {
  // For this demo, we only respond to the last message
  const message = messages.at(-1);

  // Tell the main thread we are starting
  self.postMessage({ status: "start" });

  // Load the pipeline
  const [processor, model] = await ImageGenerationPipeline.getInstance();

  // Determine if the user wants to generate an image or text
  if (message.content.startsWith(IMAGE_GENERATION_COMMAND_PREFIX)) {
    const text = message.content.replace(IMAGE_GENERATION_COMMAND_PREFIX, "");

    const conversation = [
      {
        role: "User", // uses title case
        content: text,
      },
    ];
    const inputs = await processor(conversation, {
      chat_template: "text_to_image",
    });

    const callback_function = (output) => {
      self.postMessage({
        status: "image-update",
        ...output,
      });
    };

    const num_image_tokens = processor.num_image_tokens;
    const streamer = new ProgressStreamer(num_image_tokens, callback_function);

    const outputs = await model.generate_images({
      ...inputs,
      min_new_tokens: num_image_tokens,
      max_new_tokens: num_image_tokens,
      do_sample: true,
      streamer,
    });

    const blob = await outputs[0].toBlob();

    // Send the output back to the main thread
    self.postMessage({
      status: "image-update",
      blob,
    });
  } else {
    const inputs = await processor(
      message.image
        ? [
            {
              role: "User",
              content: "<image_placeholder>\n" + message.content,
              images: [message.image],
            },
          ]
        : [
            {
              role: "System",
              content:
                "You are a helpful assistant. Answer the user's questions in a concise manner.",
            },
            {
              role: "User",
              content: message.content,
            },
          ],
    );

    let startTime;
    let numTokens = 0;
    let tps;
    const token_callback_function = () => {
      startTime ??= performance.now();

      if (numTokens++ > 0) {
        tps = (numTokens / (performance.now() - startTime)) * 1000;
      }
    };
    const callback_function = (output) => {
      self.postMessage({
        status: "text-update",
        output,
        tps,
        numTokens,
      });
    };

    const streamer = new TextStreamer(processor.tokenizer, {
      skip_prompt: true,
      skip_special_tokens: true,
      callback_function,
      token_callback_function,
    });

    // Generate response
    const outputs = await model.generate({
      ...inputs,
      max_new_tokens: MAX_NEW_TEXT_TOKENS,
      do_sample: false,
      streamer,
      stopping_criteria,
    });
  }

  // Tell the main thread we are done
  self.postMessage({
    status: "complete",
  });
}

async function load() {
  self.postMessage({
    status: "loading",
    data: "Loading model...",
  });

  // Load the pipeline and save it for future use.
  const [processor, model] = await ImageGenerationPipeline.getInstance((x) => {
    // We also add a progress callback to the pipeline so that we can
    // track model loading.
    self.postMessage(x);
  });

  self.postMessage({ status: "ready" });
}

// Listen for messages from the main thread
self.addEventListener("message", async (e) => {
  const { type, data } = e.data;

  switch (type) {
    case "check":
      check();
      break;

    case "load":
      load();
      break;

    case "generate":
      stopping_criteria.reset();
      generate(data);
      break;

    case "interrupt":
      stopping_criteria.interrupt();
      break;

    case "reset":
      stopping_criteria.reset();
      break;
  }
});