File size: 10,329 Bytes
022e8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import {
  // VAD
  AutoModel,

  // LLM
  AutoTokenizer,
  AutoModelForCausalLM,
  TextStreamer,
  InterruptableStoppingCriteria,

  // Speech recognition
  Tensor,
  pipeline,
} from "@huggingface/transformers";

import { KokoroTTS, TextSplitterStream } from "kokoro-js";

import {
  MAX_BUFFER_DURATION,
  INPUT_SAMPLE_RATE,
  SPEECH_THRESHOLD,
  EXIT_THRESHOLD,
  SPEECH_PAD_SAMPLES,
  MAX_NUM_PREV_BUFFERS,
  MIN_SILENCE_DURATION_SAMPLES,
  MIN_SPEECH_DURATION_SAMPLES,
} from "./constants";

const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
let voice;
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "fp32",
  device: "webgpu",
});

const device = "webgpu";
self.postMessage({ type: "info", message: `Using device: "${device}"` });
self.postMessage({
  type: "info",
  message: "Loading models...",
  duration: "until_next",
});

// Load models
const silero_vad = await AutoModel.from_pretrained(
  "onnx-community/silero-vad",
  {
    config: { model_type: "custom" },
    dtype: "fp32", // Full-precision
  },
).catch((error) => {
  self.postMessage({ error });
  throw error;
});

const DEVICE_DTYPE_CONFIGS = {
  webgpu: {
    encoder_model: "fp32",
    decoder_model_merged: "fp32",
  },
  wasm: {
    encoder_model: "fp32",
    decoder_model_merged: "q8",
  },
};
const transcriber = await pipeline(
  "automatic-speech-recognition",
  "onnx-community/whisper-base", // or "onnx-community/moonshine-base-ONNX",
  {
    device,
    dtype: DEVICE_DTYPE_CONFIGS[device],
  },
).catch((error) => {
  self.postMessage({ error });
  throw error;
});

await transcriber(new Float32Array(INPUT_SAMPLE_RATE)); // Compile shaders

const llm_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct";
const tokenizer = await AutoTokenizer.from_pretrained(llm_model_id);
const llm = await AutoModelForCausalLM.from_pretrained(llm_model_id, {
  dtype: "q4f16",
  device: "webgpu",
});

const SYSTEM_MESSAGE = {
  role: "system",
  content:
    "You're a helpful and conversational voice assistant. Keep your responses short, clear, and casual.",
};
await llm.generate({ ...tokenizer("x"), max_new_tokens: 1 }); // Compile shaders

let messages = [SYSTEM_MESSAGE];
let past_key_values_cache;
let stopping_criteria;
self.postMessage({
  type: "status",
  status: "ready",
  message: "Ready!",
  voices: tts.voices,
});

// Global audio buffer to store incoming audio
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE);
let bufferPointer = 0;

// Initial state for VAD
const sr = new Tensor("int64", [INPUT_SAMPLE_RATE], []);
let state = new Tensor("float32", new Float32Array(2 * 1 * 128), [2, 1, 128]);

// Whether we are in the process of adding audio to the buffer
let isRecording = false;
let isPlaying = false; // new flag

/**
 * Perform Voice Activity Detection (VAD)
 * @param {Float32Array} buffer The new audio buffer
 * @returns {Promise<boolean>} `true` if the buffer is speech, `false` otherwise.
 */
async function vad(buffer) {
  const input = new Tensor("float32", buffer, [1, buffer.length]);

  const { stateN, output } = await silero_vad({ input, sr, state });
  state = stateN; // Update state

  const isSpeech = output.data[0];

  // Use heuristics to determine if the buffer is speech or not
  return (
    // Case 1: We are above the threshold (definitely speech)
    isSpeech > SPEECH_THRESHOLD ||
    // Case 2: We are in the process of recording, and the probability is above the negative (exit) threshold
    (isRecording && isSpeech >= EXIT_THRESHOLD)
  );
}

/**
 * Transcribe the audio buffer
 * @param {Float32Array} buffer The audio buffer
 * @param {Object} data Additional data
 */
const speechToSpeech = async (buffer, data) => {
  isPlaying = true;

  // 1. Transcribe the audio from the user
  const text = await transcriber(buffer).then(({ text }) => text.trim());
  if (["", "[BLANK_AUDIO]"].includes(text)) {
    // If the transcription is empty or a blank audio, we skip the rest of the processing
    return;
  }
  messages.push({ role: "user", content: text });

  // Set up text-to-speech streaming
  const splitter = new TextSplitterStream();
  const stream = tts.stream(splitter, {
    voice,
  });
  (async () => {
    for await (const { text, phonemes, audio } of stream) {
      self.postMessage({ type: "output", text, result: audio });
    }
  })();

  // 2. Generate a response using the LLM
  const inputs = tokenizer.apply_chat_template(messages, {
    add_generation_prompt: true,
    return_dict: true,
  });
  const streamer = new TextStreamer(tokenizer, {
    skip_prompt: true,
    skip_special_tokens: true,
    callback_function: (text) => {
      splitter.push(text);
    },
    token_callback_function: () => {},
  });

  stopping_criteria = new InterruptableStoppingCriteria();
  const { past_key_values, sequences } = await llm.generate({
    ...inputs,
    past_key_values: past_key_values_cache,

    do_sample: false, // TODO: do_sample: true is bugged (invalid data location on topk sample)
    max_new_tokens: 1024,
    streamer,
    stopping_criteria,
    return_dict_in_generate: true,
  });
  past_key_values_cache = past_key_values;

  // Finally, close the stream to signal that no more text will be added.
  splitter.close();

  const decoded = tokenizer.batch_decode(
    sequences.slice(null, [inputs.input_ids.dims[1], null]),
    { skip_special_tokens: true },
  );

  messages.push({ role: "assistant", content: decoded[0] });
};

// Track the number of samples after the last speech chunk
let postSpeechSamples = 0;
const resetAfterRecording = (offset = 0) => {
  self.postMessage({
    type: "status",
    status: "recording_end",
    message: "Transcribing...",
    duration: "until_next",
  });
  BUFFER.fill(0, offset);
  bufferPointer = offset;
  isRecording = false;
  postSpeechSamples = 0;
};

const dispatchForTranscriptionAndResetAudioBuffer = (overflow) => {
  // Get start and end time of the speech segment, minus the padding
  const now = Date.now();
  const end =
    now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000;
  const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000;
  const duration = end - start;
  const overflowLength = overflow?.length ?? 0;

  // Send the audio buffer to the worker
  const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES);

  const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0);
  const paddedBuffer = new Float32Array(prevLength + buffer.length);
  let offset = 0;
  for (const prev of prevBuffers) {
    paddedBuffer.set(prev, offset);
    offset += prev.length;
  }
  paddedBuffer.set(buffer, offset);
  speechToSpeech(paddedBuffer, { start, end, duration });

  // Set overflow (if present) and reset the rest of the audio buffer
  if (overflow) {
    BUFFER.set(overflow, 0);
  }
  resetAfterRecording(overflowLength);
};

let prevBuffers = [];
self.onmessage = async (event) => {
  const { type, buffer } = event.data;

  // refuse new audio while playing back
  if (type === "audio" && isPlaying) return;

  switch (type) {
    case "start_call": {
      const name = tts.voices[voice ?? "af_heart"]?.name ?? "Heart";
      greet(`Hey there, my name is ${name}! How can I help you today?`);
      return;
    }
    case "end_call":
      messages = [SYSTEM_MESSAGE];
      past_key_values_cache = null;
    case "interrupt":
      stopping_criteria?.interrupt();
      return;
    case "set_voice":
      voice = event.data.voice;
      return;
    case "playback_ended":
      isPlaying = false;
      return;
  }

  const wasRecording = isRecording; // Save current state
  const isSpeech = await vad(buffer);

  if (!wasRecording && !isSpeech) {
    // We are not recording, and the buffer is not speech,
    // so we will probably discard the buffer. So, we insert
    // into a FIFO queue with maximum size of PREV_BUFFER_SIZE
    if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
      // If the queue is full, we discard the oldest buffer
      prevBuffers.shift();
    }
    prevBuffers.push(buffer);
    return;
  }

  const remaining = BUFFER.length - bufferPointer;
  if (buffer.length >= remaining) {
    // The buffer is larger than (or equal to) the remaining space in the global buffer,
    // so we perform transcription and copy the overflow to the global buffer
    BUFFER.set(buffer.subarray(0, remaining), bufferPointer);
    bufferPointer += remaining;

    // Dispatch the audio buffer
    const overflow = buffer.subarray(remaining);
    dispatchForTranscriptionAndResetAudioBuffer(overflow);
    return;
  } else {
    // The buffer is smaller than the remaining space in the global buffer,
    // so we copy it to the global buffer
    BUFFER.set(buffer, bufferPointer);
    bufferPointer += buffer.length;
  }

  if (isSpeech) {
    if (!isRecording) {
      // Indicate start of recording
      self.postMessage({
        type: "status",
        status: "recording_start",
        message: "Listening...",
        duration: "until_next",
      });
    }
    // Start or continue recording
    isRecording = true;
    postSpeechSamples = 0; // Reset the post-speech samples
    return;
  }

  postSpeechSamples += buffer.length;

  // At this point we're confident that we were recording (wasRecording === true), but the latest buffer is not speech.
  // So, we check whether we have reached the end of the current audio chunk.
  if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
    // There was a short pause, but not long enough to consider the end of a speech chunk
    // (e.g., the speaker took a breath), so we continue recording
    return;
  }

  if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
    // The entire buffer (including the new chunk) is smaller than the minimum
    // duration of a speech chunk, so we can safely discard the buffer.
    resetAfterRecording();
    return;
  }

  dispatchForTranscriptionAndResetAudioBuffer();
};

function greet(text) {
  isPlaying = true;
  const splitter = new TextSplitterStream();
  const stream = tts.stream(splitter, { voice });
  (async () => {
    for await (const { text: chunkText, audio } of stream) {
      self.postMessage({ type: "output", text: chunkText, result: audio });
    }
  })();
  splitter.push(text);
  splitter.close();
  messages.push({ role: "assistant", content: text });
}