Xenova's picture
Xenova HF Staff
Upload 13 files
e9129d0 verified
raw
history blame
10.3 kB
import {
// VAD
AutoModel,
// LLM
AutoTokenizer,
AutoModelForCausalLM,
TextStreamer,
InterruptableStoppingCriteria,
// Speech recognition
Tensor,
pipeline,
} from "@huggingface/transformers";
import { KokoroTTS, TextSplitterStream } from "kokoro-js";
import {
MAX_BUFFER_DURATION,
INPUT_SAMPLE_RATE,
SPEECH_THRESHOLD,
EXIT_THRESHOLD,
SPEECH_PAD_SAMPLES,
MAX_NUM_PREV_BUFFERS,
MIN_SILENCE_DURATION_SAMPLES,
MIN_SPEECH_DURATION_SAMPLES,
} from "./constants";
const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
let voice;
const tts = await KokoroTTS.from_pretrained(model_id, {
dtype: "fp32",
device: "webgpu",
});
const device = "webgpu";
self.postMessage({ type: "info", message: `Using device: "${device}"` });
self.postMessage({
type: "info",
message: "Loading models...",
duration: "until_next",
});
// Load models
const silero_vad = await AutoModel.from_pretrained(
"onnx-community/silero-vad",
{
config: { model_type: "custom" },
dtype: "fp32", // Full-precision
},
).catch((error) => {
self.postMessage({ error });
throw error;
});
const DEVICE_DTYPE_CONFIGS = {
webgpu: {
encoder_model: "fp32",
decoder_model_merged: "fp32",
},
wasm: {
encoder_model: "fp32",
decoder_model_merged: "q8",
},
};
const transcriber = await pipeline(
"automatic-speech-recognition",
"onnx-community/whisper-base", // or "onnx-community/moonshine-base-ONNX",
{
device,
dtype: DEVICE_DTYPE_CONFIGS[device],
},
).catch((error) => {
self.postMessage({ error });
throw error;
});
await transcriber(new Float32Array(INPUT_SAMPLE_RATE)); // Compile shaders
const llm_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct";
const tokenizer = await AutoTokenizer.from_pretrained(llm_model_id);
const llm = await AutoModelForCausalLM.from_pretrained(llm_model_id, {
dtype: "q4f16",
device: "webgpu",
});
const SYSTEM_MESSAGE = {
role: "system",
content:
"You're a helpful and conversational voice assistant. Keep your responses short, clear, and casual.",
};
await llm.generate({ ...tokenizer("x"), max_new_tokens: 1 }); // Compile shaders
let messages = [SYSTEM_MESSAGE];
let past_key_values_cache;
let stopping_criteria;
self.postMessage({
type: "status",
status: "ready",
message: "Ready!",
voices: tts.voices,
});
// Global audio buffer to store incoming audio
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE);
let bufferPointer = 0;
// Initial state for VAD
const sr = new Tensor("int64", [INPUT_SAMPLE_RATE], []);
let state = new Tensor("float32", new Float32Array(2 * 1 * 128), [2, 1, 128]);
// Whether we are in the process of adding audio to the buffer
let isRecording = false;
let isPlaying = false; // new flag
/**
* Perform Voice Activity Detection (VAD)
* @param {Float32Array} buffer The new audio buffer
* @returns {Promise<boolean>} `true` if the buffer is speech, `false` otherwise.
*/
async function vad(buffer) {
const input = new Tensor("float32", buffer, [1, buffer.length]);
const { stateN, output } = await silero_vad({ input, sr, state });
state = stateN; // Update state
const isSpeech = output.data[0];
// Use heuristics to determine if the buffer is speech or not
return (
// Case 1: We are above the threshold (definitely speech)
isSpeech > SPEECH_THRESHOLD ||
// Case 2: We are in the process of recording, and the probability is above the negative (exit) threshold
(isRecording && isSpeech >= EXIT_THRESHOLD)
);
}
/**
* Transcribe the audio buffer
* @param {Float32Array} buffer The audio buffer
* @param {Object} data Additional data
*/
const speechToSpeech = async (buffer, data) => {
isPlaying = true;
// 1. Transcribe the audio from the user
const text = await transcriber(buffer).then(({ text }) => text.trim());
if (["", "[BLANK_AUDIO]"].includes(text)) {
// If the transcription is empty or a blank audio, we skip the rest of the processing
return;
}
messages.push({ role: "user", content: text });
// Set up text-to-speech streaming
const splitter = new TextSplitterStream();
const stream = tts.stream(splitter, {
voice,
});
(async () => {
for await (const { text, phonemes, audio } of stream) {
self.postMessage({ type: "output", text, result: audio });
}
})();
// 2. Generate a response using the LLM
const inputs = tokenizer.apply_chat_template(messages, {
add_generation_prompt: true,
return_dict: true,
});
const streamer = new TextStreamer(tokenizer, {
skip_prompt: true,
skip_special_tokens: true,
callback_function: (text) => {
splitter.push(text);
},
token_callback_function: () => {},
});
stopping_criteria = new InterruptableStoppingCriteria();
const { past_key_values, sequences } = await llm.generate({
...inputs,
past_key_values: past_key_values_cache,
do_sample: false, // TODO: do_sample: true is bugged (invalid data location on topk sample)
max_new_tokens: 1024,
streamer,
stopping_criteria,
return_dict_in_generate: true,
});
past_key_values_cache = past_key_values;
// Finally, close the stream to signal that no more text will be added.
splitter.close();
const decoded = tokenizer.batch_decode(
sequences.slice(null, [inputs.input_ids.dims[1], null]),
{ skip_special_tokens: true },
);
messages.push({ role: "assistant", content: decoded[0] });
};
// Track the number of samples after the last speech chunk
let postSpeechSamples = 0;
const resetAfterRecording = (offset = 0) => {
self.postMessage({
type: "status",
status: "recording_end",
message: "Transcribing...",
duration: "until_next",
});
BUFFER.fill(0, offset);
bufferPointer = offset;
isRecording = false;
postSpeechSamples = 0;
};
const dispatchForTranscriptionAndResetAudioBuffer = (overflow) => {
// Get start and end time of the speech segment, minus the padding
const now = Date.now();
const end =
now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000;
const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000;
const duration = end - start;
const overflowLength = overflow?.length ?? 0;
// Send the audio buffer to the worker
const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES);
const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0);
const paddedBuffer = new Float32Array(prevLength + buffer.length);
let offset = 0;
for (const prev of prevBuffers) {
paddedBuffer.set(prev, offset);
offset += prev.length;
}
paddedBuffer.set(buffer, offset);
speechToSpeech(paddedBuffer, { start, end, duration });
// Set overflow (if present) and reset the rest of the audio buffer
if (overflow) {
BUFFER.set(overflow, 0);
}
resetAfterRecording(overflowLength);
};
let prevBuffers = [];
self.onmessage = async (event) => {
const { type, buffer } = event.data;
// refuse new audio while playing back
if (type === "audio" && isPlaying) return;
switch (type) {
case "start_call": {
const name = tts.voices[voice ?? "af_heart"]?.name ?? "Heart";
greet(`Hey there, my name is ${name}! How can I help you today?`);
return;
}
case "end_call":
messages = [SYSTEM_MESSAGE];
past_key_values_cache = null;
case "interrupt":
stopping_criteria?.interrupt();
return;
case "set_voice":
voice = event.data.voice;
return;
case "playback_ended":
isPlaying = false;
return;
}
const wasRecording = isRecording; // Save current state
const isSpeech = await vad(buffer);
if (!wasRecording && !isSpeech) {
// We are not recording, and the buffer is not speech,
// so we will probably discard the buffer. So, we insert
// into a FIFO queue with maximum size of PREV_BUFFER_SIZE
if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
// If the queue is full, we discard the oldest buffer
prevBuffers.shift();
}
prevBuffers.push(buffer);
return;
}
const remaining = BUFFER.length - bufferPointer;
if (buffer.length >= remaining) {
// The buffer is larger than (or equal to) the remaining space in the global buffer,
// so we perform transcription and copy the overflow to the global buffer
BUFFER.set(buffer.subarray(0, remaining), bufferPointer);
bufferPointer += remaining;
// Dispatch the audio buffer
const overflow = buffer.subarray(remaining);
dispatchForTranscriptionAndResetAudioBuffer(overflow);
return;
} else {
// The buffer is smaller than the remaining space in the global buffer,
// so we copy it to the global buffer
BUFFER.set(buffer, bufferPointer);
bufferPointer += buffer.length;
}
if (isSpeech) {
if (!isRecording) {
// Indicate start of recording
self.postMessage({
type: "status",
status: "recording_start",
message: "Listening...",
duration: "until_next",
});
}
// Start or continue recording
isRecording = true;
postSpeechSamples = 0; // Reset the post-speech samples
return;
}
postSpeechSamples += buffer.length;
// At this point we're confident that we were recording (wasRecording === true), but the latest buffer is not speech.
// So, we check whether we have reached the end of the current audio chunk.
if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
// There was a short pause, but not long enough to consider the end of a speech chunk
// (e.g., the speaker took a breath), so we continue recording
return;
}
if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
// The entire buffer (including the new chunk) is smaller than the minimum
// duration of a speech chunk, so we can safely discard the buffer.
resetAfterRecording();
return;
}
dispatchForTranscriptionAndResetAudioBuffer();
};
function greet(text) {
isPlaying = true;
const splitter = new TextSplitterStream();
const stream = tts.stream(splitter, { voice });
(async () => {
for await (const { text: chunkText, audio } of stream) {
self.postMessage({ type: "output", text: chunkText, result: audio });
}
})();
splitter.push(text);
splitter.close();
messages.push({ role: "assistant", content: text });
}