Spaces:
Runtime error
Runtime error
File size: 3,571 Bytes
0eb032f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import torch
class FlowMatchScheduler:
def __init__(
self,
num_inference_steps=100,
num_train_timesteps=1000,
shift=3.0,
sigma_max=1.0,
sigma_min=0.003 / 1.002,
inverse_timesteps=False,
extra_one_step=False,
reverse_sigmas=False,
):
self.num_train_timesteps = num_train_timesteps
self.shift = shift
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.inverse_timesteps = inverse_timesteps
self.extra_one_step = extra_one_step
self.reverse_sigmas = reverse_sigmas
self.set_timesteps(num_inference_steps)
def set_timesteps(
self,
num_inference_steps=100,
denoising_strength=1.0,
training=False,
shift=None,
):
if shift is not None:
self.shift = shift
sigma_start = (
self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
)
if self.extra_one_step:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps + 1
)[:-1]
else:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps
)
if self.inverse_timesteps:
self.sigmas = torch.flip(self.sigmas, dims=[0])
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
if self.reverse_sigmas:
self.sigmas = 1 - self.sigmas
self.timesteps = self.sigmas * self.num_train_timesteps
if training:
x = self.timesteps
y = torch.exp(
-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2
)
y_shifted = y - y.min()
bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
self.linear_timesteps_weights = bsmntw_weighing
def step(self, model_output, timestep, sample, to_final=False):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
if to_final or timestep_id + 1 >= len(self.timesteps):
sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
else:
sigma_ = self.sigmas[timestep_id + 1]
prev_sample = sample + model_output * (sigma_ - sigma)
return prev_sample
def return_to_timestep(self, timestep, sample, sample_stablized):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
model_output = (sample - sample_stablized) / sigma
return model_output
def add_noise(self, original_samples, noise, timestep):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
sample = (1 - sigma) * original_samples + sigma * noise
return sample
def training_target(self, sample, noise, timestep):
target = noise - sample
return target
def training_weight(self, timestep):
timestep_id = torch.argmin(
(self.timesteps - timestep.to(self.timesteps.device)).abs()
)
weights = self.linear_timesteps_weights[timestep_id]
return weights
|