Spaces:
Running
on
Zero
Running
on
Zero
root
commited on
Commit
·
df122aa
1
Parent(s):
de8dacc
update
Browse files
app.py
CHANGED
@@ -13,12 +13,12 @@ from wan_pipeline import WanPipeline
|
|
13 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
14 |
from PIL import Image
|
15 |
from diffusers.utils import export_to_video
|
16 |
-
|
17 |
-
|
18 |
from huggingface_hub import login
|
19 |
-
login(token=os.getenv('HF_TOKEN'))
|
20 |
|
|
|
|
|
21 |
|
|
|
22 |
def set_seed(seed):
|
23 |
random.seed(seed)
|
24 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
@@ -33,20 +33,17 @@ model_paths = {
|
|
33 |
"wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
34 |
}
|
35 |
|
36 |
-
# Global variable for current model
|
37 |
current_model = None
|
38 |
-
|
39 |
-
# Folder to save video outputs
|
40 |
OUTPUT_DIR = "generated_videos"
|
41 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
42 |
|
43 |
def load_model(model_name):
|
44 |
global current_model
|
45 |
if current_model is not None:
|
46 |
-
del current_model
|
47 |
-
torch.cuda.empty_cache()
|
48 |
-
gc.collect()
|
49 |
-
|
50 |
if "wan-t2v" in model_name:
|
51 |
vae = AutoencoderKLWan.from_pretrained(model_paths[model_name], subfolder="vae", torch_dtype=torch.bfloat16)
|
52 |
scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=8.0)
|
@@ -54,9 +51,8 @@ def load_model(model_name):
|
|
54 |
current_model.scheduler = scheduler
|
55 |
else:
|
56 |
current_model = StableDiffusion3Pipeline.from_pretrained(model_paths[model_name], torch_dtype=torch.bfloat16).to("cuda")
|
57 |
-
|
58 |
-
return current_model.to('cuda')
|
59 |
|
|
|
60 |
|
61 |
@spaces.GPU(duration=500)
|
62 |
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50, use_cfg_zero_star=True, use_zero_init=True, zero_steps=0, seed=None, compare_mode=False):
|
@@ -68,52 +64,26 @@ def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps
|
|
68 |
is_video_model = "wan-t2v" in model_name
|
69 |
|
70 |
if is_video_model:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
# set_seed(seed)
|
93 |
-
# video2_frames = model(
|
94 |
-
# prompt=prompt,
|
95 |
-
# guidance_scale=guidance_scale,
|
96 |
-
# num_frames=81,
|
97 |
-
# use_cfg_zero_star=False,
|
98 |
-
# use_zero_init=use_zero_init,
|
99 |
-
# zero_steps=zero_steps
|
100 |
-
# ).frames[0]
|
101 |
-
# video2_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG.mp4")
|
102 |
-
# export_to_video(video2_frames, video2_path, fps=16)
|
103 |
-
|
104 |
-
# return None, None, video1_path, video2_path, seed
|
105 |
-
# else:
|
106 |
-
# video_frames = model(
|
107 |
-
# prompt=prompt,
|
108 |
-
# guidance_scale=guidance_scale,
|
109 |
-
# num_frames=81,
|
110 |
-
# use_cfg_zero_star=use_cfg_zero_star,
|
111 |
-
# use_zero_init=use_zero_init,
|
112 |
-
# zero_steps=zero_steps
|
113 |
-
# ).frames[0]
|
114 |
-
# video_path = save_video(video_frames, f"{seed}.mp4")
|
115 |
-
# return None, None, video_path, None, seed
|
116 |
-
print('prompt: ',prompt)
|
117 |
if compare_mode:
|
118 |
set_seed(seed)
|
119 |
image1 = model(
|
@@ -134,8 +104,8 @@ def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps
|
|
134 |
use_zero_init=use_zero_init,
|
135 |
zero_steps=zero_steps
|
136 |
).images[0]
|
|
|
137 |
return image1, image2, None, seed
|
138 |
-
#return image1, image2, None, None, seed
|
139 |
else:
|
140 |
image = model(
|
141 |
prompt,
|
@@ -145,14 +115,11 @@ def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps
|
|
145 |
use_zero_init=use_zero_init,
|
146 |
zero_steps=zero_steps
|
147 |
).images[0]
|
|
|
148 |
if use_cfg_zero_star:
|
149 |
return image, None, None, seed
|
150 |
else:
|
151 |
return None, image, None, seed
|
152 |
-
# if use_cfg_zero_star:
|
153 |
-
# return image, None, None, None, seed
|
154 |
-
# else:
|
155 |
-
# return None, image, None, None, seed
|
156 |
|
157 |
# Gradio UI
|
158 |
with gr.Blocks() as demo:
|
@@ -166,28 +133,63 @@ with gr.Blocks() as demo:
|
|
166 |
</div>
|
167 |
""")
|
168 |
|
169 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
fn=generate_content,
|
171 |
inputs=[
|
172 |
-
|
173 |
-
|
174 |
-
gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale"),
|
175 |
-
gr.Slider(10, 100, value=28, step=5, label="Inference Steps"),
|
176 |
-
gr.Checkbox(value=True, label="Use Optimized-Scale"),
|
177 |
-
gr.Checkbox(value=True, label="Use Zero Init"),
|
178 |
-
gr.Slider(0, 20, value=0, step=1, label="Zero out steps"),
|
179 |
-
gr.Number(value=42, label="Seed (Leave blank for random)"),
|
180 |
-
gr.Checkbox(value=True, label="Compare Mode")
|
181 |
],
|
182 |
-
outputs=[
|
183 |
-
gr.Image(type="pil", label="CFG-Zero* Image"),
|
184 |
-
gr.Image(type="pil", label="CFG Image"),
|
185 |
-
gr.Video(label="Video"),
|
186 |
-
gr.Textbox(label="Used Seed")
|
187 |
-
],
|
188 |
-
#title="CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models",
|
189 |
-
live=False # optional
|
190 |
)
|
191 |
|
192 |
demo.launch(ssr_mode=False)
|
193 |
-
|
|
|
13 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
14 |
from PIL import Image
|
15 |
from diffusers.utils import export_to_video
|
|
|
|
|
16 |
from huggingface_hub import login
|
|
|
17 |
|
18 |
+
# Authenticate with HF
|
19 |
+
login(token=os.getenv('HF_TOKEN'))
|
20 |
|
21 |
+
# Set seed
|
22 |
def set_seed(seed):
|
23 |
random.seed(seed)
|
24 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
|
|
33 |
"wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
34 |
}
|
35 |
|
|
|
36 |
current_model = None
|
|
|
|
|
37 |
OUTPUT_DIR = "generated_videos"
|
38 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
39 |
|
40 |
def load_model(model_name):
|
41 |
global current_model
|
42 |
if current_model is not None:
|
43 |
+
del current_model
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
gc.collect()
|
46 |
+
|
47 |
if "wan-t2v" in model_name:
|
48 |
vae = AutoencoderKLWan.from_pretrained(model_paths[model_name], subfolder="vae", torch_dtype=torch.bfloat16)
|
49 |
scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=8.0)
|
|
|
51 |
current_model.scheduler = scheduler
|
52 |
else:
|
53 |
current_model = StableDiffusion3Pipeline.from_pretrained(model_paths[model_name], torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
54 |
|
55 |
+
return current_model.to("cuda")
|
56 |
|
57 |
@spaces.GPU(duration=500)
|
58 |
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50, use_cfg_zero_star=True, use_zero_init=True, zero_steps=0, seed=None, compare_mode=False):
|
|
|
64 |
is_video_model = "wan-t2v" in model_name
|
65 |
|
66 |
if is_video_model:
|
67 |
+
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
68 |
+
video1_frames = model(
|
69 |
+
prompt=prompt,
|
70 |
+
negative_prompt=negative_prompt,
|
71 |
+
height=480,
|
72 |
+
width=832,
|
73 |
+
num_frames=81,
|
74 |
+
num_inference_steps=num_inference_steps,
|
75 |
+
guidance_scale=guidance_scale,
|
76 |
+
use_cfg_zero_star=True,
|
77 |
+
use_zero_init=True,
|
78 |
+
zero_steps=0
|
79 |
+
).frames[0]
|
80 |
+
video1_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG-Zero-Star.mp4")
|
81 |
+
export_to_video(video1_frames, video1_path, fps=16)
|
82 |
+
|
83 |
+
return None, None, video1_path, seed
|
84 |
+
|
85 |
+
print("prompt:", prompt)
|
86 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if compare_mode:
|
88 |
set_seed(seed)
|
89 |
image1 = model(
|
|
|
104 |
use_zero_init=use_zero_init,
|
105 |
zero_steps=zero_steps
|
106 |
).images[0]
|
107 |
+
|
108 |
return image1, image2, None, seed
|
|
|
109 |
else:
|
110 |
image = model(
|
111 |
prompt,
|
|
|
115 |
use_zero_init=use_zero_init,
|
116 |
zero_steps=zero_steps
|
117 |
).images[0]
|
118 |
+
|
119 |
if use_cfg_zero_star:
|
120 |
return image, None, None, seed
|
121 |
else:
|
122 |
return None, image, None, seed
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Gradio UI
|
125 |
with gr.Blocks() as demo:
|
|
|
133 |
</div>
|
134 |
""")
|
135 |
|
136 |
+
with gr.Row():
|
137 |
+
prompt = gr.Textbox(value="A spooky haunted mansion on a hill silhouetted by a full moon.", label="Enter your prompt")
|
138 |
+
model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model")
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
guidance_scale = gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale")
|
142 |
+
inference_steps = gr.Slider(10, 100, value=28, step=5, label="Inference Steps")
|
143 |
+
|
144 |
+
with gr.Row():
|
145 |
+
use_opt_scale = gr.Checkbox(value=True, label="Use Optimized-Scale")
|
146 |
+
use_zero_init = gr.Checkbox(value=True, label="Use Zero Init")
|
147 |
+
zero_steps = gr.Slider(0, 20, value=0, step=1, label="Zero out steps")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
seed = gr.Number(value=42, label="Seed (Leave blank for random)")
|
151 |
+
compare_mode = gr.Checkbox(value=True, label="Compare Mode")
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
out1 = gr.Image(type="pil", label="CFG-Zero* Image")
|
155 |
+
out2 = gr.Image(type="pil", label="CFG Image")
|
156 |
+
video = gr.Video(label="Video")
|
157 |
+
used_seed = gr.Textbox(label="Used Seed")
|
158 |
+
|
159 |
+
generate_btn = gr.Button("Generate")
|
160 |
+
|
161 |
+
# Change logic for when "wan-t2v" is selected
|
162 |
+
def update_params(model_name):
|
163 |
+
if model_name == "wan-t2v":
|
164 |
+
return (
|
165 |
+
gr.update(value=5),
|
166 |
+
gr.update(value=50),
|
167 |
+
gr.update(value=True),
|
168 |
+
gr.update(value=True),
|
169 |
+
gr.update(value=1)
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
return (
|
173 |
+
gr.update(value=4.0),
|
174 |
+
gr.update(value=28),
|
175 |
+
gr.update(value=True),
|
176 |
+
gr.update(value=True),
|
177 |
+
gr.update(value=0)
|
178 |
+
)
|
179 |
+
|
180 |
+
model_choice.change(
|
181 |
+
fn=update_params,
|
182 |
+
inputs=[model_choice],
|
183 |
+
outputs=[guidance_scale, inference_steps, use_opt_scale, use_zero_init, zero_steps]
|
184 |
+
)
|
185 |
+
|
186 |
+
generate_btn.click(
|
187 |
fn=generate_content,
|
188 |
inputs=[
|
189 |
+
prompt, model_choice, guidance_scale, inference_steps,
|
190 |
+
use_opt_scale, use_zero_init, zero_steps, seed, compare_mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
],
|
192 |
+
outputs=[out1, out2, video, used_seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
demo.launch(ssr_mode=False)
|
|