File size: 11,993 Bytes
e6edcfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""

parse pascal_voc XML file to COCO json

"""
import torch
import glob
import os
import random
import re
import shutil
import json
import xml.etree.ElementTree as ET
from sklearn.model_selection import train_test_split
from data_utils import minify

CATEGORIES = ["000_aveda_shampoo", "001_binder_clips_median", "002_binder_clips_small", "003_bombik_bucket",
              "004_bonne_maman_blueberry", "005_bonne_maman_raspberry", "006_bonne_maman_strawberry",
              "007_costa_caramel", "008_essential_oil_bergamot", "009_garlic_toast_spread", "010_handcream_avocado",
              "011_hb_calcium", "012_hb_grapeseed", "013_hb_marine_collagen", "014_hellmanns_mayonnaise",
              "015_illy_blend", "016_japanese_finger_cookies", "017_john_west_canned_tuna", "018_kerastase_shampoo",
              "019_kiehls_facial_cream", "020_kiihne_balsamic", "021_kiihne_honey_mustard", "022_lindor_matcha",
              "023_lindor_salted_caramel", "024_lush_mask", "025_pasta_sauce_black_pepper", "026_pasta_sauce_tomato",
              "027_pepsi", "028_portable_yogurt_machine", "029_selfile_stick", "030_sour_lemon_drops",
              "031_sticky_notes", "032_stridex_green", "033_thermos_flask_cream", "034_thermos_flask_muji",
              "035_thermos_flask_sliver", "036_tragata_olive_oil", "037_tulip_luncheon_meat", "038_unicharm_cotton_pad",
              "039_vinda_tissue", "040_wrigley_doublemint_gum", "041_baseball_cap_black", "042_baseball_cap_pink",
              "043_bfe_facial_mask", "044_corgi_doll", "045_dinosaur_doll", "046_geo_mocha", "047_geo_roast_charcoal",
              "048_instant_noodle_black", "049_instant_noodle_red", "050_nabati_cheese_wafer", "051_truffettes",
              "052_acnes_cream", "053_aveda_conditioner", "054_banana_milk_drink", "055_candle_beast",
              "056_china_persimmon", "057_danisa_butter_cookies", "058_effaclar_duo", "059_evelom_cleanser",
              "060_glasses_box_blone", "061_handcream_iris", "062_handcream_lavender", "063_handcream_rosewater",
              "064_handcream_summer_hill", "065_hr_serum", "066_japanese_chocolate", "067_kerastase_hair_treatment",
              "068_kiehls_serum", "069_korean_beef_marinade", "070_korean_doenjang", "071_korean_gochujang",
              "072_korean_ssamjang", "073_loccitane_soap", "074_marvis_toothpaste_purple", "075_mouse_thinkpad",
              "076_oatly_chocolate", "077_oatly_original", "078_ousa_grated_cheese", "079_polaroid_film",
              "080_skinceuticals_be", "081_skinceuticals_cf", "082_skinceuticals_phyto", "083_stapler_black",
              "084_stapler_blue", "085_sunscreen_blue", "086_tempo_pocket_tissue", "087_thermos_flask_purple",
              "088_uha_matcha", "089_urban_decay_spray", "090_vitaboost_multivitamin", "091_watercolor_penbox",
              "092_youthlt_bilberry_complex", "093_daiso_mod_remover", "094_kaneyo_kitchen_bleach",
              "095_lays_chip_bag_blue", "096_lays_chip_bag_green", "097_lays_chip_tube_auburn",
              "098_lays_chip_tube_green", "099_mug_blue"]


def readXML(xml_file):
    data = []
    tree = ET.parse(xml_file)
    root = tree.getroot()
    info = {}
    info['dataname'] = []
    info['filename'] = []
    info['width'] = 1024
    info['height'] = 768
    info['depth'] = 1

    for eles in root:
        if eles.tag == 'folder':
            info['dataname'] = eles.text
        elif eles.tag == 'filename':
            info['filename'] = eles.text
        elif eles.tag == 'size':
            for elem in eles:
                if elem.tag == 'width':
                    info['width'] = elem.text
                elif elem.tag == 'height':
                    info['height'] = elem.text
                elif elem.tag == 'depth':
                    info['depth'] = elem.text
                else:
                    continue
        elif eles.tag == 'object':
            anno = dict()
            for elem in eles:
                if elem.tag == 'name':
                    anno['name'] = elem.text
                elif elem.tag == 'bndbox':
                    for subelem in elem:
                        if subelem.tag == 'xmin':
                            anno['xmin'] = float(subelem.text)
                        elif subelem.tag == 'xmax':
                            anno['xmax'] = float(subelem.text)
                        elif subelem.tag == 'ymin':
                            anno['ymin'] = float(subelem.text)
                        elif subelem.tag == 'ymax':
                            anno['ymax'] = float(subelem.text)
                        else:
                            continue
            data.append(anno)

    return info, data


def getCOCOjson(root_path, save_path, factor=1.0, flag=None):
    # parse all .xml files to a .json file
    dataset = dict()
    dataset['info'] = {}
    dataset['licenses'] = []
    dataset['images'] = []
    dataset['annotations'] = []
    dataset['categories'] = []

    dataset['info']['description'] = 'RealWorld Dataset'
    dataset['info']['url'] = ''
    dataset['info']['version'] = '1.0'
    dataset['info']['year'] = 2023
    dataset['info']['contributor'] = ''
    dataset['info']['date_created'] = ''

    licenses = {}
    licenses['url'] = ''
    licenses['id'] = 1
    licenses['name'] = ''
    dataset['licenses'].append(licenses)

    all_anno_count = 0
    img_list = sorted([p for p in glob.glob(os.path.join(root_path, 'images', '*'))
                       if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
    for i_img, img_file in enumerate(img_list):
        file_name = os.path.basename(img_file)
        if flag == 'test':
            anno_path = os.path.join(root_path, 'annotations',
                                     file_name.split('.')[0] + '.xml')  # .xml files for RealScenes
        else:
            anno_path = os.path.join(root_path, 'annotations',
                                     file_name.split('_')[0] + '.xml')  # .xml files for cut-paste-learn

        info, objects = readXML(anno_path)

        # images
        images = {}
        images['license'] = 1
        images['file_name'] = file_name
        images['coco_url'] = ''
        images['height'] = int(float(info['height']) * factor)
        images['width'] = int(float(info['width']) * factor)
        images['date_captured'] = ''
        images['flickr_url'] = ''
        images['id'] = int(i_img)

        dataset['images'].append(images)

        # annotations
        for object in objects:
            if int(object['name'].split('_')[0]) > len(CATEGORIES) - 1:
                continue
            # bbox: [xmin,ymin,w,h]
            bbox = []
            bbox.append(object['xmin'])
            bbox.append(object['ymin'])
            bbox.append(object['xmax'] - object['xmin'])
            bbox.append(object['ymax'] - object['ymin'])

            if factor != 1:
                bbox = [x * factor for x in bbox]

            # when segmentation annotation not given, use [[x1,y1,x2,y1,x2,y2,x1,y2]] instead
            segmentation = [[bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1],
                             bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[0], bbox[1] + bbox[3]]]

            annotations = {}
            annotations['segmentation'] = segmentation
            annotations['area'] = bbox[-1] * bbox[-2]
            annotations['iscrowd'] = 0
            annotations['image_id'] = int(i_img)
            annotations['bbox'] = bbox
            annotations['category_id'] = int(object['name'].split('_')[0])
            annotations['id'] = all_anno_count

            dataset['annotations'].append(annotations)
            all_anno_count += 1

    # categories
    for i_cat, cat in enumerate(CATEGORIES):
        categories = {}
        categories['supercategory'] = cat
        categories['id'] = i_cat
        categories['name'] = cat
        dataset['categories'].append(categories)

    with open(save_path, 'w', encoding='utf-8') as f:
        json.dump(dataset, f)
    print('ok')


if __name__ == '__main__':

    # root_path = "../syndata-generation/syndata_1"

    # image_paths = os.listdir(os.path.join(root_path, 'images'))
    # # train:val = 0.75:0.25
    # image_train, image_val = train_test_split(image_paths, test_size=0.25, random_state=77)

    # # copy image to train set --> create train_json
    # if not os.path.exists(os.path.join(root_path, 'train')):
    #     os.makedirs(os.path.join(root_path, 'train', 'images'))
    #     os.makedirs(os.path.join(root_path, 'train/annotations'))

    # for name in image_train:
    #     shutil.copy(os.path.join(root_path, 'images', name),
    #                 os.path.join(root_path, 'train/images', name))
    #     shutil.copy(os.path.join(root_path, 'annotations', name.split('_')[0] + '.xml'),
    #                 os.path.join(root_path, 'train/annotations', name.split('_')[0] + '.xml'))

    # getCOCOjson(os.path.join(root_path, 'train'), os.path.join(root_path, 'instances_train.json'))

    # # copy image to val set --> create val_json
    # if not os.path.exists(os.path.join(root_path, 'val')):
    #     os.makedirs(os.path.join(root_path, 'val/images'))
    #     os.makedirs(os.path.join(root_path, 'val/annotations'))

    # for name in image_val:
    #     shutil.copy(os.path.join(root_path, 'images', name),
    #                 os.path.join(root_path, 'val/images', name))
    #     shutil.copy(os.path.join(root_path, 'annotations', name.split('_')[0] + '.xml'),
    #                 os.path.join(root_path, 'val/annotations', name.split('_')[0] + '.xml'))

    # getCOCOjson(os.path.join(root_path, 'val'), os.path.join(root_path, 'instances_val.json'))

    # test data
    
    level = 'hard'  # 'all', 'hard', 'easy'
    factor = 1
    root_path = "../InsDet/Scenes"
    test_path = "../database/Data/test_" + str(factor) + '_' + str(level) 
    if not os.path.exists(os.path.join(test_path, 'images')):
        os.makedirs(os.path.join(test_path, 'images'))
    if not os.path.exists(os.path.join(test_path, 'annotations')):
        os.makedirs(os.path.join(test_path, 'annotations'))
    
    if level == 'all':
        image_paths = sorted([p for p in glob.glob(os.path.join(root_path, '*/*/*'))
                              if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
        anno_paths = sorted([p for p in glob.glob(os.path.join(root_path, '*/*/*'))
                             if re.search('/*\.xml', str(p))])
    else:
        image_paths = sorted([p for p in glob.glob(os.path.join(root_path, level, '*/*'))
                              if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
        anno_paths = sorted([p for p in glob.glob(os.path.join(root_path, level, '*/*'))
                             if re.search('/*\.xml', str(p))])
    
    for i, file_path in enumerate(zip(image_paths, anno_paths)):
        file_name = 'test_' + '%03d' % i
        img_extend = os.path.splitext(file_path[0])[-1]  # extend for image file
        anno_extend = os.path.splitext(file_path[1])[-1]  # extend for image file
    
        shutil.copyfile(file_path[0], os.path.join(test_path, 'images', file_name + img_extend))
        shutil.copyfile(file_path[1], os.path.join(test_path, 'annotations', file_name + anno_extend))
    
    getCOCOjson(os.path.join(test_path),
                os.path.join(test_path, "instances_test_" + str(factor) + '_' + str(level) + ".json"),
                factor=1/factor, flag='test')
    # height = 6144
    # width = 8192
    # minify(os.path.join(test_path, 'images'), os.path.join(test_path, 'test'),
    #        factors=[], resolutions=[[int(height / factor), int(width / factor)]], extend='jpg')