Spaces:
Running
Running
File size: 11,042 Bytes
dc80a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import torch
import webvtt
import os
import cv2
from minigpt4.common.eval_utils import prepare_texts, init_model
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
import shutil
from PIL import Image
from moviepy.editor import VideoFileClip
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import cv2
import webvtt
from bisect import bisect_left
import whisper
import time
from datetime import timedelta
# Function to format timestamps for VTT
def format_timestamp(seconds):
td = timedelta(seconds=seconds)
total_seconds = int(td.total_seconds())
milliseconds = int(td.microseconds / 1000)
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def extract_video_info(video_path,max_images_length):
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
clip.close()
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
return sampling_interval,clip.fps
def time_to_milliseconds(time_str):
# Convert time format "hh:mm:ss.sss" to milliseconds
h, m, s = map(float, time_str.split(':'))
return int((h * 3600 + m * 60 + s) * 1000)
def extract_subtitles(subtitle_path):
# Parse the VTT file into a list of (start_time_ms, end_time_ms, text)
subtitles = []
for caption in webvtt.read(subtitle_path):
start_ms = time_to_milliseconds(caption.start)
end_ms = time_to_milliseconds(caption.end)
text = caption.text.strip().replace('\n', ' ')
subtitles.append((start_ms, end_ms, text))
return subtitles
def find_subtitle(subtitles, frame_count, fps):
frame_time = (frame_count / fps)*1000
left, right = 0, len(subtitles) - 1
while left <= right:
mid = (left + right) // 2
start, end, subtitle_text = subtitles[mid]
# print("Mid start end sub ",mid,start,end,subtitle_text)
if start <= frame_time <= end:
return subtitle_text
elif frame_time < start:
right = mid - 1
else:
left = mid + 1
return None # If no subtitle is found
def match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames):
cap = cv2.VideoCapture(video_path)
images = []
frame_count = 0
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
# first_frame=cap.read()[1]
# video_out=cv2.VideoWriter("old_prepare_input.mp4",cv2.VideoWriter_fourcc(*'mp4v'), 1, (first_frame.shape[1],first_frame.shape[0]))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if len (subtitles) > 0:
# use binary search to find the subtitle for the current frame which the frame time is between the start and end time of the subtitle
frame_subtitle=find_subtitle(subtitles, frame_count, fps)
if frame_subtitle and not history_subtitles.get(frame_subtitle,False):
subtitle_text_in_interval+=frame_subtitle+" "
history_subtitles[frame_subtitle]=True
if frame_count % sampling_interval == 0:
# raw_frame=frame.copy()
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
# write the subtitle on the frame
# cv2.putText(raw_frame,subtitle_text_in_interval,(10,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
# video_out.write(raw_frame)
frame_count += 1
if len(images) >= max_frames:
break
cap.release()
cv2.destroyAllWindows()
# video_out.release()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
return images,img_placeholder
def prepare_input(video_path, subtitle_path,instruction):
if "mistral" in args.ckpt :
max_frames=90
max_sub_len = 800
else:
max_frames = 45
max_sub_len = 400
sampling_interval,fps = extract_video_info(video_path, max_frames)
subtitles = extract_subtitles(subtitle_path)
frames_features,input_placeholder = match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames)
input_placeholder+="\n"+instruction
return frames_features, input_placeholder
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def get_subtitles(video_path) :
audio_dir="workspace/inference_subtitles/mp3"
subtitle_dir="workspace/inference_subtitles"
os.makedirs(subtitle_dir, exist_ok=True)
os.makedirs(audio_dir, exist_ok=True)
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
# if the subtitles are already generated, return the path of the subtitles
if os.path.exists(subtitle_path):
return f"{subtitle_dir}/{video_id}"+'.vtt'
audio_path = f"{audio_dir}/{video_id}"+'.mp3'
try:
extract_audio(video_path, audio_path)
result = whisper_model.transcribe(audio_path,language="en")
# Create VTT file
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
vtt_file.write("WEBVTT\n\n")
for segment in result['segments']:
start = format_timestamp(segment['start'])
end = format_timestamp(segment['end'])
text = segment['text']
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
return subtitle_path
except Exception as e:
print(f"Error during subtitle generation for {video_path}: {e}")
return None
def stream_answer(generation_kwargs):
streamer = TextIteratorStreamer(model.llama_tokenizer, skip_special_tokens=True)
generation_kwargs['streamer'] = streamer
thread = Thread(target=model_generate, kwargs=generation_kwargs)
thread.start()
return streamer
def escape_markdown(text):
# List of Markdown special characters that need to be escaped
md_chars = ['<', '>']
# Escape each special character
for char in md_chars:
text = text.replace(char, '\\' + char)
return text
def model_generate(*args, **kwargs):
# for 8 bit and 16 bit compatibility
with model.maybe_autocast():
output = model.llama_model.generate(*args, **kwargs)
return output
def generate_prediction (video_path,instruction,gen_subtitles=True,stream=True):
if gen_subtitles:
subtitle_path=get_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
# print("prompt",prompt)
if stream:
generation_kwargs = model.answer_prepare_for_streaming(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
streamer=stream_answer(generation_kwargs)
print("Streamed answer:",end='')
for a in streamer:
print(a,end='')
print()
else:
setup_seeds(50)
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
print("Generated_answer :",answers[0])
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
parser.add_argument("--add_subtitles",action= 'store_true',help="whether to add subtitles")
parser.add_argument("--stream",action= 'store_true',help="whether to stream the answer")
parser.add_argument("--question", type=str, help="question to ask")
parser.add_argument("--video_path", type=str, help="Path to the video file")
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
model, vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args)
whisper_model=whisper.load_model("large").to(f"cuda:{whisper_gpu_id}")
conv = CONV_VISION.copy()
conv.system = ""
if __name__ == "__main__":
video_path=args.video_path
instruction=args.question
add_subtitles=args.add_subtitles
stream=args.stream
setup_seeds(50)
t1=time.time()
generate_prediction(video_path,instruction,gen_subtitles=add_subtitles,stream=stream)
print("Time taken for inference",time.time()-t1) |