Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -107,17 +107,23 @@ def generate_ocr(method, image):
|
|
107 |
with torch.no_grad():
|
108 |
outputs = model(**inputs)
|
109 |
logits = outputs.logits # Get raw logits
|
110 |
-
probs = F.softmax(logits, dim=1) # Convert logits to probabilities
|
111 |
|
112 |
-
# Print
|
113 |
-
print(f"
|
114 |
|
|
|
|
|
|
|
115 |
# Extract probability values
|
116 |
not_spam_prob = probs[0, 0].item()
|
117 |
spam_prob = probs[0, 1].item()
|
118 |
|
119 |
-
#
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
label = "Spam"
|
122 |
else:
|
123 |
label = "Not Spam"
|
|
|
107 |
with torch.no_grad():
|
108 |
outputs = model(**inputs)
|
109 |
logits = outputs.logits # Get raw logits
|
|
|
110 |
|
111 |
+
# Print raw logits for debugging
|
112 |
+
print(f"Raw logits: {logits}")
|
113 |
|
114 |
+
# Convert logits to probabilities
|
115 |
+
probs = F.softmax(logits, dim=1)
|
116 |
+
|
117 |
# Extract probability values
|
118 |
not_spam_prob = probs[0, 0].item()
|
119 |
spam_prob = probs[0, 1].item()
|
120 |
|
121 |
+
# Print probabilities for debugging
|
122 |
+
print(f"Not Spam Probability: {not_spam_prob}, Spam Probability: {spam_prob}")
|
123 |
+
|
124 |
+
# Use a classification threshold to avoid bias
|
125 |
+
threshold = 0.55 # Adjust based on observations
|
126 |
+
if spam_prob >= threshold:
|
127 |
label = "Spam"
|
128 |
else:
|
129 |
label = "Not Spam"
|