File size: 9,480 Bytes
ff119bb
 
a4ebbec
 
ff119bb
 
a4ebbec
7d56bcc
ff119bb
7d56bcc
a4ebbec
ff119bb
 
 
 
a4ebbec
7d56bcc
a4ebbec
 
7d56bcc
a4ebbec
 
 
 
b0a4224
 
a4ebbec
7d56bcc
 
 
a4ebbec
b0a4224
a4ebbec
b0a4224
a4ebbec
b0a4224
a4ebbec
b0a4224
 
 
 
7d56bcc
b0a4224
a4ebbec
 
7d56bcc
 
 
 
a4ebbec
b0a4224
ff119bb
a4ebbec
 
 
 
b0a4224
7d56bcc
a4ebbec
7d56bcc
 
b0a4224
7d56bcc
a4ebbec
7d56bcc
 
a4ebbec
b0a4224
7d56bcc
b0a4224
7d56bcc
 
 
b0a4224
 
 
 
7d56bcc
 
b0a4224
7d56bcc
a4ebbec
b0a4224
a4ebbec
7d56bcc
 
 
b0a4224
 
 
 
 
 
 
 
 
 
a4ebbec
7d56bcc
b0a4224
 
 
 
 
7d56bcc
 
a4ebbec
 
7d56bcc
 
b0a4224
 
 
7d56bcc
 
 
ff119bb
7d56bcc
b0a4224
7d56bcc
 
 
 
ff119bb
b0a4224
 
ff119bb
a4ebbec
7d56bcc
 
 
ff119bb
 
7d56bcc
 
 
 
ff119bb
7d56bcc
ff119bb
7d56bcc
 
 
 
a4ebbec
 
 
ff119bb
7d56bcc
a4ebbec
7d56bcc
a4ebbec
7d56bcc
a4ebbec
ff119bb
 
7d56bcc
a4ebbec
7d56bcc
a4ebbec
7d56bcc
a4ebbec
 
7d56bcc
a4ebbec
7d56bcc
 
a4ebbec
 
 
ff119bb
a4ebbec
 
 
7d56bcc
ff119bb
 
a4ebbec
 
 
 
 
 
 
 
 
7d56bcc
a4ebbec
 
 
 
 
 
 
 
ff119bb
 
 
 
a4ebbec
 
7d56bcc
a4ebbec
ff119bb
 
 
 
7d56bcc
ff119bb
 
 
 
a4ebbec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import sys
import os
import subprocess # For calling generate.py
import tempfile # For handling temporary image files
from typing import Optional
from PIL import Image as PILImage
import gradio as gr
import time # For timing

# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM"
if NANOVLM_REPO_PATH not in sys.path:
    print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path")
    sys.path.insert(0, NANOVLM_REPO_PATH)

print(f"DEBUG: Python sys.path: {sys.path}")
print(f"DEBUG: Gradio version: {gr.__version__}") # Log Gradio version

GENERATE_SCRIPT_PATH = "/app/nanoVLM/generate.py"
MODEL_REPO_ID = "lusxvr/nanoVLM-222M"

print(f"DEBUG: Using generate.py script at: {GENERATE_SCRIPT_PATH}")
print(f"DEBUG: Using model repo ID: {MODEL_REPO_ID}")

# In app.py

def call_generate_script(image_path: str, prompt_text: str) -> str:
    print(f"\n--- DEBUG (call_generate_script) ---")
    print(f"Timestamp: {time.strftime('%Y-%m-%d %H:%M:%S')}")
    print(f"Calling with image_path='{image_path}', prompt='{prompt_text}'")
    
    # Arguments for nanoVLM's generate.py, VERIFIED against its source code
    cmd_args = [
        "python", "-u", GENERATE_SCRIPT_PATH,
        "--hf_model", MODEL_REPO_ID,
        "--image_path", image_path,      # VERIFIED: script expects --image_path
        "--prompt", prompt_text,
        "--num_samples", "1",           # VERIFIED: script expects --num_samples
        "--max_new_tokens", "30",       # This was correct
        "--device", "cpu"               # VERIFIED: script expects --device
        # Optional args for generate.py that you can add if needed:
        # "--temperature", "0.7",
        # "--top_k", "200" # Default is 200 in script
    ]
    
    print(f"Executing command: {' '.join(cmd_args)}")
    
    SCRIPT_TIMEOUT_SECONDS = 55 
    start_time = time.time()
    
    process_identifier = "generate.py_process" 
    try:
        process = subprocess.run(
            cmd_args,
            capture_output=True,
            text=True,
            check=False,
            timeout=SCRIPT_TIMEOUT_SECONDS
        )

        duration = time.time() - start_time
        print(f"Subprocess ({process_identifier}) finished in {duration:.2f} seconds.")
        print(f"generate.py RETURN CODE: {process.returncode}")
        
        stdout = process.stdout.strip() if process.stdout else "[No STDOUT from generate.py]"
        stderr = process.stderr.strip() if process.stderr else "[No STDERR from generate.py]"

        print(f"---------- generate.py STDOUT ({process_identifier}) START ----------\n{stdout}\n---------- generate.py STDOUT ({process_identifier}) END ----------")
        if stderr or process.returncode != 0:
            print(f"---------- generate.py STDERR ({process_identifier}) START ----------\n{stderr}\n---------- generate.py STDERR ({process_identifier}) END ----------")

        if process.returncode != 0:
            error_message = f"Error: Generation script failed (code {process.returncode})."
            if "unrecognized arguments" in stderr:
                error_message += " Argument mismatch with script."
            print(error_message)
            return error_message + f" STDERR Snippet: {stderr[:300]}" # Show more stderr

        # --- Parse the output from nanoVLM's generate.py ---
        # The original nanoVLM generate.py prints:
        # > Sample 1: <generated text>
        output_lines = stdout.splitlines()
        generated_text = "[No parsable output from generate.py]"
        
        found_output_line = False
        for line_idx, line in enumerate(output_lines):
            stripped_line = line.strip()
            # The actual generate.py from nanoVLM prints "> Sample 1:"
            prefix_to_remove = None
            if stripped_line.startswith("> Sample 1:"): 
                prefix_to_remove = "> Sample 1:"
            
            if prefix_to_remove:
                generated_text = stripped_line.replace(prefix_to_remove, "", 1).strip()
                found_output_line = True
                print(f"Parsed generated text: '{generated_text}'")
                break 
        
        if not found_output_line:
            print(f"Could not find '> Sample 1:' line in generate.py output. Raw STDOUT was:\n{stdout}")
            if stdout:
                generated_text = f"[Parsing failed] STDOUT: {stdout[:500]}"
            else:
                generated_text = "[Parsing failed, no STDOUT from script]"

        print(f"Returning parsed text: '{generated_text}'")
        return generated_text

    except subprocess.TimeoutExpired as e:
        duration = time.time() - start_time
        print(f"ERROR: generate.py ({process_identifier}) timed out after {duration:.2f} seconds (limit: {SCRIPT_TIMEOUT_SECONDS}s).")
        stdout_on_timeout = e.stdout.strip() if hasattr(e, 'stdout') and e.stdout else "[No STDOUT on timeout]"
        stderr_on_timeout = e.stderr.strip() if hasattr(e, 'stderr') and e.stderr else "[No STDERR on timeout]"
        print(f"STDOUT on timeout:\n{stdout_on_timeout}")
        print(f"STDERR on timeout:\n{stderr_on_timeout}")
        return f"Error: Generation script timed out after {SCRIPT_TIMEOUT_SECONDS}s. Model loading and generation may be too slow for CPU."
    except Exception as e:
        duration = time.time() - start_time
        print(f"ERROR: An unexpected error occurred ({process_identifier}) after {duration:.2f}s: {type(e).__name__} - {e}")
        import traceback; traceback.print_exc()
        return f"Unexpected error calling script: {str(e)}"
    finally:
        print(f"--- END (call_generate_script) ---")

# The rest of your app.py (gradio_interface_fn, Gradio Interface Definition, __main__ block)
# should remain the same.

def gradio_interface_fn(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str:
    print(f"\nDEBUG (gradio_interface_fn): Timestamp: {time.strftime('%Y-%m-%d %H:%M:%S')}")
    print(f"Received prompt: '{prompt_input_str}', Image type: {type(image_input_pil)}")

    if image_input_pil is None:
        return "Please upload an image."
    
    cleaned_prompt = prompt_input_str.strip() if prompt_input_str else ""
    if not cleaned_prompt:
        return "Please provide a non-empty prompt."

    tmp_image_path = None 
    try:
        if image_input_pil.mode != "RGB":
            print(f"Converting image from {image_input_pil.mode} to RGB.")
            image_input_pil = image_input_pil.convert("RGB")

        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_image_file:
            image_input_pil.save(tmp_image_file, format="JPEG")
            tmp_image_path = tmp_image_file.name
        
        print(f"Temporary image saved to: {tmp_image_path}")
        
        result_text = call_generate_script(tmp_image_path, cleaned_prompt)
        
        print(f"Result from call_generate_script: '{result_text}'")
        return result_text
        
    except Exception as e:
        print(f"ERROR (gradio_interface_fn): Error processing image or calling script: {type(e).__name__} - {e}")
        import traceback; traceback.print_exc()
        return f"An error occurred in Gradio interface function: {str(e)}"
    finally:
        if tmp_image_path and os.path.exists(tmp_image_path):
            try:
                os.remove(tmp_image_path)
                print(f"Temporary image {tmp_image_path} removed.")
            except Exception as e_remove:
                print(f"WARN: Could not remove temporary image {tmp_image_path}: {e_remove}")
        print(f"DEBUG (gradio_interface_fn): Exiting.")


# --- Gradio Interface Definition ---
description_md = """
## nanoVLM-222M Interactive Demo (via generate.py)
Upload an image and type a prompt. This interface calls the `generate.py` script from
`huggingface/nanoVLM` under the hood to perform inference.
**Note:** Each request re-loads the model via the script, so it might be slow on CPU.
"""

print("DEBUG: Defining Gradio interface...")
iface = None
try:
    iface = gr.Interface(
        fn=gradio_interface_fn,
        inputs=[
            gr.Image(type="pil", label="Upload Image"),
            gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'")
        ],
        outputs=gr.Textbox(label="Generated Text", show_copy_button=True, lines=5),
        title="nanoVLM-222M Demo (via Script)",
        description=description_md,
        allow_flagging="never"
    )
    print("DEBUG: Gradio interface defined successfully.")
except Exception as e:
    print(f"CRITICAL ERROR defining Gradio interface: {e}")
    import traceback; traceback.print_exc()

# --- Launch Gradio App ---
if __name__ == "__main__":
    print("DEBUG: Entered __main__ block for Gradio launch.")
    if not os.path.exists(GENERATE_SCRIPT_PATH):
        print(f"CRITICAL ERROR: The script {GENERATE_SCRIPT_PATH} was not found. Cannot launch app.")
        iface = None 

    if iface is not None:
        print("DEBUG: Attempting to launch Gradio interface...")
        try:
            iface.launch(server_name="0.0.0.0", server_port=7860)
            print("DEBUG: Gradio launch command issued. UI should be accessible.")
        except Exception as e:
            print(f"CRITICAL ERROR launching Gradio interface: {e}")
            import traceback; traceback.print_exc()
    else:
        print("CRITICAL ERROR: Gradio interface (iface) is None or not defined. Cannot launch.")