Spaces:
Running
Running
vidhanm
commited on
Commit
·
0b8c303
1
Parent(s):
4d396f8
removed examples
Browse files
app.py
CHANGED
@@ -9,10 +9,8 @@ if NANOVLM_REPO_PATH not in sys.path:
|
|
9 |
import gradio as gr
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
-
# Import specific processor components
|
13 |
from transformers import CLIPImageProcessor, GPT2TokenizerFast
|
14 |
|
15 |
-
# Import the custom VisionLanguageModel class
|
16 |
try:
|
17 |
from models.vision_language_model import VisionLanguageModel
|
18 |
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
|
@@ -20,7 +18,6 @@ except ImportError as e:
|
|
20 |
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.")
|
21 |
VisionLanguageModel = None
|
22 |
|
23 |
-
# Determine the device to use
|
24 |
device_choice = os.environ.get("DEVICE", "auto")
|
25 |
if device_choice == "auto":
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -28,7 +25,6 @@ else:
|
|
28 |
device = device_choice
|
29 |
print(f"Using device: {device}")
|
30 |
|
31 |
-
# --- Configuration for model components ---
|
32 |
model_id_for_weights = "lusxvr/nanoVLM-222M"
|
33 |
image_processor_id = "openai/clip-vit-base-patch32"
|
34 |
tokenizer_id = "gpt2"
|
@@ -40,22 +36,18 @@ model = None
|
|
40 |
if VisionLanguageModel:
|
41 |
try:
|
42 |
print(f"Attempting to load CLIPImageProcessor from: {image_processor_id}")
|
43 |
-
|
44 |
-
image_processor = CLIPImageProcessor.from_pretrained(image_processor_id, trust_remote_code=True)
|
45 |
print("CLIPImageProcessor loaded.")
|
46 |
|
47 |
print(f"Attempting to load GPT2TokenizerFast from: {tokenizer_id}")
|
48 |
-
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_id
|
49 |
if tokenizer.pad_token is None:
|
50 |
tokenizer.pad_token = tokenizer.eos_token
|
51 |
print("Set tokenizer pad_token to eos_token.")
|
52 |
print("GPT2TokenizerFast loaded.")
|
53 |
|
54 |
print(f"Attempting to load model weights from {model_id_for_weights} using VisionLanguageModel.from_pretrained")
|
55 |
-
|
56 |
-
model = VisionLanguageModel.from_pretrained(
|
57 |
-
model_id_for_weights
|
58 |
-
).to(device)
|
59 |
print("Model loaded successfully.")
|
60 |
model.eval()
|
61 |
|
@@ -63,62 +55,43 @@ if VisionLanguageModel:
|
|
63 |
print(f"Error loading model or processor components: {e}")
|
64 |
import traceback
|
65 |
traceback.print_exc()
|
66 |
-
image_processor = None
|
67 |
-
tokenizer = None
|
68 |
-
model = None
|
69 |
else:
|
70 |
print("Custom VisionLanguageModel class not imported, cannot load model.")
|
71 |
|
72 |
-
# ... (rest of the app.py remains the same) ...
|
73 |
def prepare_inputs(text_list, image_input, image_processor_instance, tokenizer_instance, device_to_use):
|
74 |
if image_processor_instance is None or tokenizer_instance is None:
|
75 |
raise ValueError("Image processor or tokenizer not initialized.")
|
76 |
-
|
77 |
processed_image = image_processor_instance(images=image_input, return_tensors="pt").pixel_values.to(device_to_use)
|
78 |
-
|
79 |
processed_text = tokenizer_instance(
|
80 |
-
text=text_list, return_tensors="pt", padding=True, truncation=True, max_length=tokenizer_instance
|
81 |
)
|
82 |
input_ids = processed_text.input_ids.to(device_to_use)
|
83 |
attention_mask = processed_text.attention_mask.to(device_to_use)
|
84 |
-
|
85 |
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask}
|
86 |
|
87 |
def generate_text_for_image(image_input, prompt_input):
|
88 |
if model is None or image_processor is None or tokenizer is None:
|
89 |
return "Error: Model or processor components not loaded correctly. Check logs."
|
90 |
-
|
91 |
-
if
|
92 |
-
return "Please upload an image."
|
93 |
-
if not prompt_input:
|
94 |
-
return "Please provide a prompt."
|
95 |
|
96 |
try:
|
97 |
if not isinstance(image_input, Image.Image):
|
98 |
pil_image = Image.fromarray(image_input)
|
99 |
else:
|
100 |
pil_image = image_input
|
101 |
-
|
102 |
-
if pil_image.mode != "RGB":
|
103 |
-
pil_image = pil_image.convert("RGB")
|
104 |
|
105 |
inputs = prepare_inputs(
|
106 |
-
text_list=[prompt_input],
|
107 |
-
|
108 |
-
image_processor_instance=image_processor,
|
109 |
-
tokenizer_instance=tokenizer,
|
110 |
-
device_to_use=device
|
111 |
)
|
112 |
|
113 |
generated_ids = model.generate(
|
114 |
-
pixel_values=inputs['pixel_values'],
|
115 |
-
|
116 |
-
|
117 |
-
max_new_tokens=150,
|
118 |
-
num_beams=3,
|
119 |
-
no_repeat_ngram_size=2,
|
120 |
-
early_stopping=True,
|
121 |
-
pad_token_id=tokenizer.pad_token_id
|
122 |
)
|
123 |
|
124 |
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
@@ -128,38 +101,51 @@ def generate_text_for_image(image_input, prompt_input):
|
|
128 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
129 |
else:
|
130 |
cleaned_text = generated_text
|
131 |
-
|
132 |
return cleaned_text.strip()
|
133 |
-
|
134 |
except Exception as e:
|
135 |
print(f"Error during generation: {e}")
|
136 |
-
import traceback
|
137 |
-
traceback.print_exc()
|
138 |
return f"An error occurred during text generation: {str(e)}"
|
139 |
|
140 |
description = "Interactive demo for lusxvr/nanoVLM-222M."
|
141 |
-
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
[
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
if model is None or image_processor is None or tokenizer is None:
|
162 |
-
print("CRITICAL: Model or processor components failed to load.")
|
163 |
-
|
|
|
164 |
print("Launching Gradio interface...")
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import gradio as gr
|
10 |
from PIL import Image
|
11 |
import torch
|
|
|
12 |
from transformers import CLIPImageProcessor, GPT2TokenizerFast
|
13 |
|
|
|
14 |
try:
|
15 |
from models.vision_language_model import VisionLanguageModel
|
16 |
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
|
|
|
18 |
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.")
|
19 |
VisionLanguageModel = None
|
20 |
|
|
|
21 |
device_choice = os.environ.get("DEVICE", "auto")
|
22 |
if device_choice == "auto":
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
25 |
device = device_choice
|
26 |
print(f"Using device: {device}")
|
27 |
|
|
|
28 |
model_id_for_weights = "lusxvr/nanoVLM-222M"
|
29 |
image_processor_id = "openai/clip-vit-base-patch32"
|
30 |
tokenizer_id = "gpt2"
|
|
|
36 |
if VisionLanguageModel:
|
37 |
try:
|
38 |
print(f"Attempting to load CLIPImageProcessor from: {image_processor_id}")
|
39 |
+
image_processor = CLIPImageProcessor.from_pretrained(image_processor_id) # Removed trust_remote_code if not strictly needed by processor
|
|
|
40 |
print("CLIPImageProcessor loaded.")
|
41 |
|
42 |
print(f"Attempting to load GPT2TokenizerFast from: {tokenizer_id}")
|
43 |
+
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_id) # Removed trust_remote_code if not strictly needed by tokenizer
|
44 |
if tokenizer.pad_token is None:
|
45 |
tokenizer.pad_token = tokenizer.eos_token
|
46 |
print("Set tokenizer pad_token to eos_token.")
|
47 |
print("GPT2TokenizerFast loaded.")
|
48 |
|
49 |
print(f"Attempting to load model weights from {model_id_for_weights} using VisionLanguageModel.from_pretrained")
|
50 |
+
model = VisionLanguageModel.from_pretrained(model_id_for_weights).to(device)
|
|
|
|
|
|
|
51 |
print("Model loaded successfully.")
|
52 |
model.eval()
|
53 |
|
|
|
55 |
print(f"Error loading model or processor components: {e}")
|
56 |
import traceback
|
57 |
traceback.print_exc()
|
58 |
+
image_processor = None; tokenizer = None; model = None
|
|
|
|
|
59 |
else:
|
60 |
print("Custom VisionLanguageModel class not imported, cannot load model.")
|
61 |
|
|
|
62 |
def prepare_inputs(text_list, image_input, image_processor_instance, tokenizer_instance, device_to_use):
|
63 |
if image_processor_instance is None or tokenizer_instance is None:
|
64 |
raise ValueError("Image processor or tokenizer not initialized.")
|
|
|
65 |
processed_image = image_processor_instance(images=image_input, return_tensors="pt").pixel_values.to(device_to_use)
|
|
|
66 |
processed_text = tokenizer_instance(
|
67 |
+
text=text_list, return_tensors="pt", padding=True, truncation=True, max_length=getattr(tokenizer_instance, 'model_max_length', 512)
|
68 |
)
|
69 |
input_ids = processed_text.input_ids.to(device_to_use)
|
70 |
attention_mask = processed_text.attention_mask.to(device_to_use)
|
|
|
71 |
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask}
|
72 |
|
73 |
def generate_text_for_image(image_input, prompt_input):
|
74 |
if model is None or image_processor is None or tokenizer is None:
|
75 |
return "Error: Model or processor components not loaded correctly. Check logs."
|
76 |
+
if image_input is None: return "Please upload an image."
|
77 |
+
if not prompt_input: return "Please provide a prompt."
|
|
|
|
|
|
|
78 |
|
79 |
try:
|
80 |
if not isinstance(image_input, Image.Image):
|
81 |
pil_image = Image.fromarray(image_input)
|
82 |
else:
|
83 |
pil_image = image_input
|
84 |
+
if pil_image.mode != "RGB": pil_image = pil_image.convert("RGB")
|
|
|
|
|
85 |
|
86 |
inputs = prepare_inputs(
|
87 |
+
text_list=[prompt_input], image_input=pil_image,
|
88 |
+
image_processor_instance=image_processor, tokenizer_instance=tokenizer, device_to_use=device
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
generated_ids = model.generate(
|
92 |
+
pixel_values=inputs['pixel_values'], input_ids=inputs['input_ids'],
|
93 |
+
attention_mask=inputs['attention_mask'], max_new_tokens=150, num_beams=3,
|
94 |
+
no_repeat_ngram_size=2, early_stopping=True, pad_token_id=tokenizer.pad_token_id
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
|
97 |
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
101 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
102 |
else:
|
103 |
cleaned_text = generated_text
|
|
|
104 |
return cleaned_text.strip()
|
|
|
105 |
except Exception as e:
|
106 |
print(f"Error during generation: {e}")
|
107 |
+
import traceback; traceback.print_exc()
|
|
|
108 |
return f"An error occurred during text generation: {str(e)}"
|
109 |
|
110 |
description = "Interactive demo for lusxvr/nanoVLM-222M."
|
111 |
+
# example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # Not used for now
|
112 |
+
|
113 |
+
print("Defining Gradio interface...")
|
114 |
+
try:
|
115 |
+
iface = gr.Interface(
|
116 |
+
fn=generate_text_for_image,
|
117 |
+
inputs=[
|
118 |
+
gr.Image(type="pil", label="Upload Image"),
|
119 |
+
gr.Textbox(label="Your Prompt/Question")
|
120 |
+
],
|
121 |
+
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
122 |
+
title="Interactive nanoVLM-222M Demo",
|
123 |
+
description=description,
|
124 |
+
# examples=[ # <<<< REMOVED EXAMPLES
|
125 |
+
# [example_image_url, "a photo of a"],
|
126 |
+
# [example_image_url, "Describe the image in detail."],
|
127 |
+
# ],
|
128 |
+
allow_flagging="never"
|
129 |
+
)
|
130 |
+
print("Gradio interface defined.")
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error defining Gradio interface: {e}")
|
133 |
+
import traceback; traceback.print_exc()
|
134 |
+
iface = None
|
135 |
+
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
if model is None or image_processor is None or tokenizer is None:
|
139 |
+
print("CRITICAL: Model or processor components failed to load. Gradio might not work.")
|
140 |
+
|
141 |
+
if iface is not None:
|
142 |
print("Launching Gradio interface...")
|
143 |
+
try:
|
144 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
145 |
+
except Exception as e:
|
146 |
+
print(f"Error launching Gradio interface: {e}")
|
147 |
+
import traceback; traceback.print_exc()
|
148 |
+
# This is where the ValueError: When localhost is not accessible... usually comes from
|
149 |
+
# if the underlying TypeError has already happened during iface setup.
|
150 |
+
else:
|
151 |
+
print("Gradio interface could not be defined due to earlier errors.")
|