Spaces:
Running
Running
vidhanm
commited on
Commit
·
4670dfa
1
Parent(s):
1313dd4
Add application files for nanoVLM
Browse files- Dockerfile +30 -0
- app.py +113 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a slim Python base image. For GPU, you'd need a CUDA-enabled base.
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install git (useful for some Hugging Face model/tokenizer downloads that might use it)
|
8 |
+
# Also install common build tools often needed for Python packages
|
9 |
+
RUN apt-get update && apt-get install -y \
|
10 |
+
git \
|
11 |
+
build-essential \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Copy the requirements file first to leverage Docker layer caching
|
15 |
+
COPY requirements.txt requirements.txt
|
16 |
+
|
17 |
+
# Install Python dependencies
|
18 |
+
# --no-cache-dir reduces image size
|
19 |
+
# --prefer-binary can speed up builds for packages with binary distributions
|
20 |
+
RUN pip install --no-cache-dir --prefer-binary -r requirements.txt
|
21 |
+
|
22 |
+
# Copy the application code into the container
|
23 |
+
COPY app.py app.py
|
24 |
+
|
25 |
+
# Expose the port Gradio will run on (default is 7860)
|
26 |
+
EXPOSE 7860
|
27 |
+
|
28 |
+
# Set the default command to run the Gradio application
|
29 |
+
# Using `python -u` for unbuffered output, which is good for logging
|
30 |
+
CMD ["python", "-u", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Determine the device to use
|
8 |
+
# Using os.environ.get to allow device override from Space hardware config if needed
|
9 |
+
# Defaults to CUDA if available, else CPU.
|
10 |
+
device_choice = os.environ.get("DEVICE", "auto")
|
11 |
+
if device_choice == "auto":
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
else:
|
14 |
+
device = device_choice
|
15 |
+
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
|
18 |
+
# Load the model and processor
|
19 |
+
model_id = "lusxvr/nanoVLM-222M"
|
20 |
+
try:
|
21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id).to(device)
|
23 |
+
print("Model and processor loaded successfully.")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading model/processor: {e}")
|
26 |
+
# If loading fails, we'll have the Gradio app display an error.
|
27 |
+
# This helps in debugging if the Space doesn't start correctly.
|
28 |
+
processor = None
|
29 |
+
model = None
|
30 |
+
|
31 |
+
def generate_text_for_image(image_input, prompt_input):
|
32 |
+
"""
|
33 |
+
Generates text based on an image and a text prompt.
|
34 |
+
"""
|
35 |
+
if model is None or processor is None:
|
36 |
+
return "Error: Model or processor not loaded. Check the Space logs for details."
|
37 |
+
|
38 |
+
if image_input is None:
|
39 |
+
return "Please upload an image."
|
40 |
+
if not prompt_input:
|
41 |
+
return "Please provide a prompt (e.g., 'Describe this image' or 'What color is the car?')."
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Ensure the image is in PIL format and RGB
|
45 |
+
if not isinstance(image_input, Image.Image):
|
46 |
+
pil_image = Image.fromarray(image_input)
|
47 |
+
else:
|
48 |
+
pil_image = image_input
|
49 |
+
|
50 |
+
if pil_image.mode != "RGB":
|
51 |
+
pil_image = pil_image.convert("RGB")
|
52 |
+
|
53 |
+
# Prepare inputs for the model
|
54 |
+
# The prompt for nanoVLM is typically a question or an instruction.
|
55 |
+
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
56 |
+
|
57 |
+
# Generate text
|
58 |
+
# You can adjust max_new_tokens, temperature, top_k, etc.
|
59 |
+
generated_ids = model.generate(
|
60 |
+
**inputs,
|
61 |
+
max_new_tokens=150, # Increased for potentially longer descriptions
|
62 |
+
num_beams=3, # Example of adding beam search
|
63 |
+
no_repeat_ngram_size=2,
|
64 |
+
early_stopping=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# Decode the generated tokens
|
68 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
69 |
+
|
70 |
+
# The output might sometimes include the prompt itself, depending on the model.
|
71 |
+
# Simple heuristic to remove prompt if it appears at the beginning:
|
72 |
+
if generated_text.startswith(prompt_input):
|
73 |
+
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
74 |
+
else:
|
75 |
+
cleaned_text = generated_text
|
76 |
+
|
77 |
+
return cleaned_text.strip()
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
print(f"Error during generation: {e}")
|
81 |
+
return f"An error occurred: {str(e)}"
|
82 |
+
|
83 |
+
# Create the Gradio interface
|
84 |
+
description = """
|
85 |
+
Upload an image and provide a text prompt (e.g., "What is in this image?", "Describe the animal in detail.").
|
86 |
+
The model will generate a textual response based on the visual content and your query.
|
87 |
+
This Space uses the `lusxvr/nanoVLM-222M` model.
|
88 |
+
"""
|
89 |
+
|
90 |
+
# Example image from COCO dataset
|
91 |
+
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
|
92 |
+
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=generate_text_for_image,
|
95 |
+
inputs=[
|
96 |
+
gr.Image(type="pil", label="Upload Image"),
|
97 |
+
gr.Textbox(label="Your Prompt/Question", info="e.g., 'What is this a picture of?', 'Describe the main subject.', 'How many animals are there?'")
|
98 |
+
],
|
99 |
+
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
100 |
+
title="Interactive nanoVLM-222M Demo",
|
101 |
+
description=description,
|
102 |
+
examples=[
|
103 |
+
[example_image_url, "a photo of a"],
|
104 |
+
[example_image_url, "Describe the image in detail."],
|
105 |
+
[example_image_url, "What objects are on the sofa?"],
|
106 |
+
],
|
107 |
+
cache_examples=True # Cache results for examples to load faster
|
108 |
+
)
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
# For Hugging Face Spaces, it's common to launch with server_name="0.0.0.0"
|
112 |
+
# The Space infrastructure handles the public URL and port mapping.
|
113 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.36.0
|
3 |
+
Pillow>=10.0.0
|
4 |
+
gradio
|
5 |
+
sentencepiece
|
6 |
+
accelerate
|