Spaces:
Running
Running
vidhanm
commited on
Commit
·
fbe5121
1
Parent(s):
055abc9
updated app.py for loading local files from repo
Browse files
app.py
CHANGED
@@ -1,39 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
5 |
import os
|
6 |
|
7 |
# Determine the device to use
|
8 |
-
# Using os.environ.get to allow device override from Space hardware config if needed
|
9 |
-
# Defaults to CUDA if available, else CPU.
|
10 |
device_choice = os.environ.get("DEVICE", "auto")
|
11 |
if device_choice == "auto":
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
else:
|
14 |
device = device_choice
|
15 |
-
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
# Load the model and processor
|
19 |
model_id = "lusxvr/nanoVLM-222M"
|
|
|
|
|
|
|
20 |
try:
|
21 |
-
processor
|
22 |
-
|
|
|
|
|
|
|
23 |
print("Model and processor loaded successfully.")
|
24 |
except Exception as e:
|
25 |
print(f"Error loading model/processor: {e}")
|
26 |
-
#
|
27 |
-
# This helps in debugging if the Space doesn't start correctly.
|
28 |
-
processor = None
|
29 |
-
model = None
|
30 |
|
31 |
def generate_text_for_image(image_input, prompt_input):
|
32 |
-
"""
|
33 |
-
Generates text based on an image and a text prompt.
|
34 |
-
"""
|
35 |
if model is None or processor is None:
|
36 |
-
return "Error: Model or processor not loaded. Check the Space logs
|
37 |
|
38 |
if image_input is None:
|
39 |
return "Please upload an image."
|
@@ -41,7 +38,6 @@ def generate_text_for_image(image_input, prompt_input):
|
|
41 |
return "Please provide a prompt (e.g., 'Describe this image' or 'What color is the car?')."
|
42 |
|
43 |
try:
|
44 |
-
# Ensure the image is in PIL format and RGB
|
45 |
if not isinstance(image_input, Image.Image):
|
46 |
pil_image = Image.fromarray(image_input)
|
47 |
else:
|
@@ -50,26 +46,20 @@ def generate_text_for_image(image_input, prompt_input):
|
|
50 |
if pil_image.mode != "RGB":
|
51 |
pil_image = pil_image.convert("RGB")
|
52 |
|
53 |
-
# Prepare inputs for the model
|
54 |
-
# The prompt for nanoVLM is typically a question or an instruction.
|
55 |
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
56 |
-
|
57 |
-
# Generate text
|
58 |
-
# You can adjust max_new_tokens, temperature, top_k, etc.
|
59 |
generated_ids = model.generate(
|
60 |
**inputs,
|
61 |
-
max_new_tokens=150,
|
62 |
-
num_beams=3,
|
63 |
no_repeat_ngram_size=2,
|
64 |
early_stopping=True
|
65 |
)
|
66 |
|
67 |
-
# Decode the generated tokens
|
68 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
if generated_text.startswith(prompt_input):
|
73 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
74 |
else:
|
75 |
cleaned_text = generated_text
|
@@ -78,35 +68,20 @@ def generate_text_for_image(image_input, prompt_input):
|
|
78 |
|
79 |
except Exception as e:
|
80 |
print(f"Error during generation: {e}")
|
81 |
-
|
|
|
82 |
|
83 |
-
# Create the Gradio interface
|
84 |
description = """
|
85 |
Upload an image and provide a text prompt (e.g., "What is in this image?", "Describe the animal in detail.").
|
86 |
The model will generate a textual response based on the visual content and your query.
|
87 |
This Space uses the `lusxvr/nanoVLM-222M` model.
|
88 |
"""
|
89 |
-
|
90 |
-
# Example image from COCO dataset
|
91 |
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
|
92 |
|
93 |
-
#
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
# gr.Textbox(label="Your Prompt/Question", info="e.g., 'What is this a picture of?', 'Describe the main subject.', 'How many animals are there?'")
|
98 |
-
# ],
|
99 |
-
# outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
100 |
-
# title="Interactive nanoVLM-222M Demo",
|
101 |
-
# description=description,
|
102 |
-
# examples=[
|
103 |
-
# [example_image_url, "a photo of a"],
|
104 |
-
# [example_image_url, "Describe the image in detail."],
|
105 |
-
# [example_image_url, "What objects are on the sofa?"],
|
106 |
-
# ],
|
107 |
-
# cache_examples=True # Cache results for examples to load faster
|
108 |
-
# )
|
109 |
-
# ... (other parts of your app.py)
|
110 |
|
111 |
iface = gr.Interface(
|
112 |
fn=generate_text_for_image,
|
@@ -123,14 +98,15 @@ iface = gr.Interface(
|
|
123 |
[example_image_url, "What objects are on the sofa?"],
|
124 |
],
|
125 |
cache_examples=True,
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# flagging_dir=os.environ.get("GRADIO_FLAGGING_DIR"),
|
130 |
)
|
131 |
|
132 |
-
|
133 |
if __name__ == "__main__":
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq # Keep these for now
|
5 |
import os
|
6 |
|
7 |
# Determine the device to use
|
|
|
|
|
8 |
device_choice = os.environ.get("DEVICE", "auto")
|
9 |
if device_choice == "auto":
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
else:
|
12 |
device = device_choice
|
|
|
13 |
print(f"Using device: {device}")
|
14 |
|
15 |
# Load the model and processor
|
16 |
model_id = "lusxvr/nanoVLM-222M"
|
17 |
+
processor = None
|
18 |
+
model = None
|
19 |
+
|
20 |
try:
|
21 |
+
print(f"Attempting to load processor for {model_id} with trust_remote_code=True")
|
22 |
+
# For custom models like nanoVLM, trust_remote_code=True is often needed.
|
23 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
24 |
+
print(f"Processor loaded. Attempting to load model for {model_id} with trust_remote_code=True")
|
25 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id, trust_remote_code=True).to(device)
|
26 |
print("Model and processor loaded successfully.")
|
27 |
except Exception as e:
|
28 |
print(f"Error loading model/processor: {e}")
|
29 |
+
# More detailed error logging or fallback could be added here.
|
|
|
|
|
|
|
30 |
|
31 |
def generate_text_for_image(image_input, prompt_input):
|
|
|
|
|
|
|
32 |
if model is None or processor is None:
|
33 |
+
return "Error: Model or processor not loaded. Check the Space logs. This might be due to missing 'trust_remote_code=True' or model compatibility issues."
|
34 |
|
35 |
if image_input is None:
|
36 |
return "Please upload an image."
|
|
|
38 |
return "Please provide a prompt (e.g., 'Describe this image' or 'What color is the car?')."
|
39 |
|
40 |
try:
|
|
|
41 |
if not isinstance(image_input, Image.Image):
|
42 |
pil_image = Image.fromarray(image_input)
|
43 |
else:
|
|
|
46 |
if pil_image.mode != "RGB":
|
47 |
pil_image = pil_image.convert("RGB")
|
48 |
|
|
|
|
|
49 |
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
50 |
+
|
|
|
|
|
51 |
generated_ids = model.generate(
|
52 |
**inputs,
|
53 |
+
max_new_tokens=150,
|
54 |
+
num_beams=3,
|
55 |
no_repeat_ngram_size=2,
|
56 |
early_stopping=True
|
57 |
)
|
58 |
|
|
|
59 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
60 |
|
61 |
+
# Basic cleaning of the prompt if the model includes it in the output
|
62 |
+
if prompt_input and generated_text.startswith(prompt_input):
|
|
|
63 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
64 |
else:
|
65 |
cleaned_text = generated_text
|
|
|
68 |
|
69 |
except Exception as e:
|
70 |
print(f"Error during generation: {e}")
|
71 |
+
# Provide a more user-friendly error if possible
|
72 |
+
return f"An error occurred during text generation: {str(e)}"
|
73 |
|
|
|
74 |
description = """
|
75 |
Upload an image and provide a text prompt (e.g., "What is in this image?", "Describe the animal in detail.").
|
76 |
The model will generate a textual response based on the visual content and your query.
|
77 |
This Space uses the `lusxvr/nanoVLM-222M` model.
|
78 |
"""
|
|
|
|
|
79 |
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
|
80 |
|
81 |
+
# Get the pre-defined writable directory for Gradio's temporary files/cache
|
82 |
+
# This environment variable is set in your Dockerfile.
|
83 |
+
gradio_cache_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio_tmp")
|
84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=generate_text_for_image,
|
|
|
98 |
[example_image_url, "What objects are on the sofa?"],
|
99 |
],
|
100 |
cache_examples=True,
|
101 |
+
# Use the writable directory for caching examples
|
102 |
+
examples_cache_folder=gradio_cache_dir,
|
103 |
+
allow_flagging="never"
|
|
|
104 |
)
|
105 |
|
|
|
106 |
if __name__ == "__main__":
|
107 |
+
if model is None or processor is None:
|
108 |
+
print("CRITICAL: Model or processor failed to load. Gradio interface will not start.")
|
109 |
+
# You could raise an error here or sys.exit(1) to make the Space fail clearly if loading is essential.
|
110 |
+
else:
|
111 |
+
print("Launching Gradio interface...")
|
112 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|