import sys import os from typing import Optional from PIL import Image as PILImage # Add the cloned nanoVLM directory to Python's system path NANOVLM_REPO_PATH = "/app/nanoVLM" # This path is where your Dockerfile clones huggingface/nanoVLM if NANOVLM_REPO_PATH not in sys.path: print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path") sys.path.insert(0, NANOVLM_REPO_PATH) import gradio as gr import torch from transformers import AutoProcessor # Using AutoProcessor as in the successful generate.py # Import the custom VisionLanguageModel class VisionLanguageModel = None try: print("DEBUG: Attempting to import VisionLanguageModel from models.vision_language_model") from models.vision_language_model import VisionLanguageModel print("DEBUG: Successfully imported VisionLanguageModel.") except ImportError as e: print(f"CRITICAL ERROR: Importing VisionLanguageModel failed: {e}") except Exception as e: print(f"CRITICAL ERROR: An unexpected error occurred during VisionLanguageModel import: {e}") # --- Device Setup --- device = "cuda" if torch.cuda.is_available() else "cpu" print(f"DEBUG: Using device: {device}") # --- Configuration --- model_repo_id = "lusxvr/nanoVLM-222M" # Used for both processor and model weights print(f"DEBUG: Model Repository ID for processor and model: {model_repo_id}") # --- Initialize --- processor = None model = None if VisionLanguageModel: # Only proceed if custom model class was imported try: # Load processor using AutoProcessor, mirroring generate.py print(f"DEBUG: Loading processor using AutoProcessor.from_pretrained('{model_repo_id}')") # generate.py doesn't explicitly use trust_remote_code=True for processor, # but it might be implicitly active in your local transformers or not needed if processor_config is clear. # Let's try without it first for AutoProcessor, then add if "Unrecognized model" for processor reappears. processor = AutoProcessor.from_pretrained(model_repo_id) # Try without TRC first for processor print(f"DEBUG: AutoProcessor loaded: {type(processor)}") # Ensure tokenizer has pad_token set if it's GPT-2 based (AutoProcessor should handle a tokenizer component) if hasattr(processor, 'tokenizer') and processor.tokenizer is not None: current_tokenizer = processor.tokenizer if getattr(current_tokenizer, 'pad_token', None) is None and hasattr(current_tokenizer, 'eos_token'): current_tokenizer.pad_token = current_tokenizer.eos_token print(f"DEBUG: Set processor.tokenizer.pad_token to eos_token (ID: {current_tokenizer.eos_token_id})") else: print("WARN: Processor does not have a 'tokenizer' attribute or it's None. Cannot set pad_token.") # Load model using VisionLanguageModel.from_pretrained, mirroring generate.py print(f"DEBUG: Loading model VisionLanguageModel.from_pretrained('{model_repo_id}')") # The custom VLM.from_pretrained doesn't take trust_remote_code model = VisionLanguageModel.from_pretrained(model_repo_id).to(device) print(f"DEBUG: VisionLanguageModel loaded: {type(model)}") model.eval() print("DEBUG: Model set to eval() mode.") except Exception as e: print(f"CRITICAL ERROR loading model or processor: {e}") import traceback traceback.print_exc() processor = None; model = None # Ensure they are None if loading fails else: print("CRITICAL ERROR: VisionLanguageModel class not imported. Cannot load model.") # --- Text Generation Function --- def generate_text_for_image(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str: print(f"DEBUG (generate_text_for_image): Received prompt: '{prompt_input_str}'") if model is None or processor is None: print("ERROR (generate_text_for_image): Model or processor not loaded.") return "Error: Model or processor not loaded. Please check the application logs." if image_input_pil is None: print("WARN (generate_text_for_image): No image uploaded.") return "Please upload an image." if not prompt_input_str: # Check for empty or None prompt print("WARN (generate_text_for_image): No prompt provided.") return "Please provide a prompt." try: current_pil_image = image_input_pil if not isinstance(current_pil_image, PILImage.Image): # Should be PIL from Gradio's type="pil" print(f"WARN (generate_text_for_image): Input image not PIL, type: {type(current_pil_image)}. Converting.") current_pil_image = PILImage.fromarray(current_pil_image) if current_pil_image.mode != "RGB": print(f"DEBUG (generate_text_for_image): Converting image from {current_pil_image.mode} to RGB.") current_pil_image = current_pil_image.convert("RGB") print(f"DEBUG (generate_text_for_image): Image prepped - size: {current_pil_image.size}, mode: {current_pil_image.mode}") # Prepare inputs using the AutoProcessor, as in generate.py print("DEBUG (generate_text_for_image): Processing inputs with AutoProcessor...") inputs = processor( text=[prompt_input_str], images=current_pil_image, return_tensors="pt" ).to(device) print(f"DEBUG (generate_text_for_image): Inputs from AutoProcessor - keys: {inputs.keys()}") print(f"DEBUG (generate_text_for_image): input_ids shape: {inputs['input_ids'].shape}, values: {inputs['input_ids']}") print(f"DEBUG (generate_text_for_image): pixel_values shape: {inputs['pixel_values'].shape}") attention_mask = inputs.get('attention_mask') if attention_mask is None: # Should be provided by AutoProcessor print("WARN (generate_text_for_image): attention_mask not in processor output. Creating default.") attention_mask = torch.ones_like(inputs['input_ids']).to(device) print(f"DEBUG (generate_text_for_image): attention_mask shape: {attention_mask.shape}") print("DEBUG (generate_text_for_image): Calling model.generate...") # Signature for nanoVLM's generate: (self, input_ids, image, attention_mask, max_new_tokens, ...) generated_ids_tensor = model.generate( inputs['input_ids'], inputs['pixel_values'], # This is the 'image' argument for the model's generate method attention_mask, max_new_tokens=50, # Consistent with successful generate.py test temperature=0.7, # From generate.py defaults (or adjust as preferred) top_k=50, # From generate.py defaults (or adjust as preferred) # greedy=False is default in nanoVLM's generate ) print(f"DEBUG (generate_text_for_image): Raw generated_ids: {generated_ids_tensor}") # Use processor.batch_decode, as in generate.py generated_text_list = processor.batch_decode(generated_ids_tensor, skip_special_tokens=True) print(f"DEBUG (generate_text_for_image): Decoded text list: {generated_text_list}") generated_text_str = generated_text_list[0] if generated_text_list else "" # Optional: Clean up prompt if echoed cleaned_text_str = generated_text_str if prompt_input_str and generated_text_str.startswith(prompt_input_str): cleaned_text_str = generated_text_str[len(prompt_input_str):].lstrip(" ,.:") print(f"DEBUG (generate_text_for_image): Final cleaned text: '{cleaned_text_str}'") return cleaned_text_str.strip() except Exception as e: print(f"CRITICAL ERROR during generation: {e}") import traceback traceback.print_exc() return f"Error during generation: {str(e)}. Check logs." # --- Gradio Interface --- description_md = """ ## nanoVLM-222M Interactive Demo Upload an image and type a prompt to get a description or answer from the model. This Space uses the `lusxvr/nanoVLM-222M` model weights with the `huggingface/nanoVLM` model code. """ iface = None # Only define the interface if the model and processor loaded successfully if VisionLanguageModel and model and processor: try: print("DEBUG: Defining Gradio interface...") iface = gr.Interface( fn=generate_text_for_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'") ], outputs=gr.Textbox(label="Generated Text", show_copy_button=True), title="nanoVLM-222M Demo", description=description_md, allow_flagging="never" # No examples or caching for now to keep it simple ) print("DEBUG: Gradio interface defined successfully.") except Exception as e: print(f"CRITICAL ERROR defining Gradio interface: {e}") import traceback; traceback.print_exc() else: print("WARN: Model and/or processor did not load. Gradio interface will not be created.") # --- Launch Gradio App --- if __name__ == "__main__": print("DEBUG: Entered __main__ block for Gradio launch.") if iface is not None: print("DEBUG: Attempting to launch Gradio interface...") try: iface.launch(server_name="0.0.0.0", server_port=7860) print("DEBUG: Gradio launch command issued.") except Exception as e: print(f"CRITICAL ERROR launching Gradio interface: {e}") import traceback; traceback.print_exc() else: print("CRITICAL ERROR: Gradio interface (iface) is None or not defined due to loading errors. Cannot launch.")