# Use a slim Python base image. FROM python:3.9-slim # Set the working directory in the container WORKDIR /app # Set Hugging Face cache directory and Gradio temp/flagging dir ENV HF_HOME=/app/.cache/huggingface ENV GRADIO_TEMP_DIR=/tmp/gradio_tmp ENV GRADIO_FLAGGING_DIR=/tmp/gradio_flags # Install git and build-essential RUN apt-get update && apt-get install -y \ git \ build-essential \ && rm -rf /var/lib/apt/lists/* # Clone the original nanoVLM repository for its model definition files # This makes the `models` directory from nanoVLM available under /app/nanoVLM RUN git clone https://github.com/huggingface/nanoVLM.git /app/nanoVLM # Create the cache and temp directories and make them writable RUN mkdir -p $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR && \ chmod -R 777 $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR # Copy the requirements file first COPY requirements.txt requirements.txt # Install Python dependencies RUN pip install --no-cache-dir --prefer-binary -r requirements.txt # Copy the application code into the container COPY app.py app.py # Expose the port Gradio will run on EXPOSE 7860 # Set the default command to run the Gradio application CMD ["python", "-u", "app.py"]