File size: 6,783 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Calculate the normalization constant for discriminator rejection
import torch
import torch.nn as nn

import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from networks import ConditionGenerator, load_checkpoint, define_D

from utils import *


def get_opt():
    parser = argparse.ArgumentParser()

    parser.add_argument("--name", default="test")
    parser.add_argument("--gpu_ids", default="")
    parser.add_argument('-j', '--workers', type=int, default=4)
    parser.add_argument('-b', '--batch-size', type=int, default=8)
    parser.add_argument('--fp16', action='store_true', help='use amp')

    parser.add_argument("--dataroot", default="./data")
    parser.add_argument("--datamode", default="train")
    parser.add_argument("--data_list", default="train_pairs_zalando.txt")
    parser.add_argument("--fine_width", type=int, default=192)
    parser.add_argument("--fine_height", type=int, default=256)

    parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
    parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
    parser.add_argument('--D_checkpoint', type=str, default='', help='tocg checkpoint')
    parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')

    parser.add_argument("--tensorboard_count", type=int, default=100)
    parser.add_argument("--display_count", type=int, default=100)
    parser.add_argument("--save_count", type=int, default=10000)
    parser.add_argument("--load_step", type=int, default=0)
    parser.add_argument("--keep_step", type=int, default=300000)
    parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
    parser.add_argument("--semantic_nc", type=int, default=13)
    parser.add_argument("--output_nc", type=int, default=13)
    
    # Condition generator
    parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
    parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
    parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
    # network structure
    parser.add_argument('--Ddownx2', action='store_true', help="Downsample D's input to increase the receptive field")  
    parser.add_argument('--Ddropout', action='store_true', help="Apply dropout to D")
    parser.add_argument('--num_D', type=int, default=2, help='Generator ngf')
    parser.add_argument('--spectral', action='store_true', help="Apply spectral normalization to D")

    parser.add_argument("--test_datasetting", default="unpaired")
    parser.add_argument("--test_dataroot", default="./data/zalando-hd-resize")
    parser.add_argument("--test_data_list", default="test_pairs.txt")
    
    opt = parser.parse_args()
    return opt

def D_logit(pred):
    score = 0
    for i in pred:
        score += i[-1].mean((1,2,3)) / 2
    return score
def get_const(opt, train_loader, tocg, D, length):
    # Model
    D.cuda()
    D.eval()
    tocg.cuda()
    tocg.eval()

    logit_list = []
    i = 0
    for step in range(length // opt.batch_size):
        iter_start_time = time.time()
        inputs = train_loader.next_batch()

        # input1
        c_paired = inputs['cloth']['paired'].cuda()
        cm_paired = inputs['cloth_mask']['paired'].cuda()
        cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        # input2
        parse_agnostic = inputs['parse_agnostic'].cuda()
        densepose = inputs['densepose'].cuda()
        openpose = inputs['pose'].cuda()
        # GT
        label_onehot = inputs['parse_onehot'].cuda()  # CE
        label = inputs['parse'].cuda()  # GAN loss
        parse_cloth_mask = inputs['pcm'].cuda()  # L1
        im_c = inputs['parse_cloth'].cuda()  # VGG
        # visualization
        im = inputs['image']
        with torch.no_grad():
            # inputs
            input1 = torch.cat([c_paired, cm_paired], 1)
            input2 = torch.cat([parse_agnostic, densepose], 1)

            flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
            if opt.clothmask_composition != 'no_composition':
                if opt.clothmask_composition == 'detach':
                    warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
                    cloth_mask = torch.ones_like(fake_segmap.detach())
                    cloth_mask[:, 3:4, :, :] = warped_cm_onehot
                    fake_segmap = fake_segmap * cloth_mask
                    
                if opt.clothmask_composition == 'warp_grad':
                    cloth_mask = torch.ones_like(fake_segmap.detach())
                    cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
                    fake_segmap = fake_segmap * cloth_mask
            
            
            fake_segmap_softmax = F.softmax(fake_segmap, dim=1)
            
            real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
            fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax),dim=1))
            
            print("real:", D_logit(real_segmap_pred), "fake:", D_logit(fake_segmap_pred))
            # print(fake_segmap_pred)
            logit_real = D_logit(real_segmap_pred)
            logit_fake = D_logit(fake_segmap_pred)
            for l in logit_real:
                l = l / (1-l)
                logit_list.append(l.item())
            for l in logit_fake:
                l = l / (1-l)
                logit_list.append(l.item())
                
        # i += logit_real.shape[0]+logit_fake.shape[0]
        print("i:", i)
    logit_list.sort()
    
    return logit_list[-1]
        

def main():
    opt = get_opt()
    print(opt)
    os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
    
    # create train dataset & loader
    train_dataset = CPDataset(opt)
    train_loader = CPDataLoader(opt, train_dataset)
    
    # Model
    input1_nc = 4  # cloth + cloth-mask
    input2_nc = opt.semantic_nc + 3  # parse_agnostic + densepose
    D = define_D(input_nc=input1_nc + input2_nc + opt.output_nc, Ddownx2 = opt.Ddownx2, Ddropout = opt.Ddropout, n_layers_D=3, spectral = opt.spectral, num_D = opt.num_D)
    tocg = ConditionGenerator(opt, input1_nc=4, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
    # Load Checkpoint
    load_checkpoint(D, opt.D_checkpoint)
    load_checkpoint(tocg, opt.tocg_checkpoint)
    
    
    M = get_const(opt, train_loader, tocg, D, length = len(train_dataset))
    print("M:", M)


if __name__ == "__main__":
    main()