Spaces:
Running
Running
File size: 6,783 Bytes
8a6df40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Calculate the normalization constant for discriminator rejection
import torch
import torch.nn as nn
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from networks import ConditionGenerator, load_checkpoint, define_D
from utils import *
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--name", default="test")
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument("--dataroot", default="./data")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs_zalando.txt")
parser.add_argument("--fine_width", type=int, default=192)
parser.add_argument("--fine_height", type=int, default=256)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--D_checkpoint', type=str, default='', help='tocg checkpoint')
parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=10000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=300000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--semantic_nc", type=int, default=13)
parser.add_argument("--output_nc", type=int, default=13)
# Condition generator
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# network structure
parser.add_argument('--Ddownx2', action='store_true', help="Downsample D's input to increase the receptive field")
parser.add_argument('--Ddropout', action='store_true', help="Apply dropout to D")
parser.add_argument('--num_D', type=int, default=2, help='Generator ngf')
parser.add_argument('--spectral', action='store_true', help="Apply spectral normalization to D")
parser.add_argument("--test_datasetting", default="unpaired")
parser.add_argument("--test_dataroot", default="./data/zalando-hd-resize")
parser.add_argument("--test_data_list", default="test_pairs.txt")
opt = parser.parse_args()
return opt
def D_logit(pred):
score = 0
for i in pred:
score += i[-1].mean((1,2,3)) / 2
return score
def get_const(opt, train_loader, tocg, D, length):
# Model
D.cuda()
D.eval()
tocg.cuda()
tocg.eval()
logit_list = []
i = 0
for step in range(length // opt.batch_size):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input1
c_paired = inputs['cloth']['paired'].cuda()
cm_paired = inputs['cloth_mask']['paired'].cuda()
cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
# input2
parse_agnostic = inputs['parse_agnostic'].cuda()
densepose = inputs['densepose'].cuda()
openpose = inputs['pose'].cuda()
# GT
label_onehot = inputs['parse_onehot'].cuda() # CE
label = inputs['parse'].cuda() # GAN loss
parse_cloth_mask = inputs['pcm'].cuda() # L1
im_c = inputs['parse_cloth'].cuda() # VGG
# visualization
im = inputs['image']
with torch.no_grad():
# inputs
input1 = torch.cat([c_paired, cm_paired], 1)
input2 = torch.cat([parse_agnostic, densepose], 1)
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
fake_segmap_softmax = F.softmax(fake_segmap, dim=1)
real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax),dim=1))
print("real:", D_logit(real_segmap_pred), "fake:", D_logit(fake_segmap_pred))
# print(fake_segmap_pred)
logit_real = D_logit(real_segmap_pred)
logit_fake = D_logit(fake_segmap_pred)
for l in logit_real:
l = l / (1-l)
logit_list.append(l.item())
for l in logit_fake:
l = l / (1-l)
logit_list.append(l.item())
# i += logit_real.shape[0]+logit_fake.shape[0]
print("i:", i)
logit_list.sort()
return logit_list[-1]
def main():
opt = get_opt()
print(opt)
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
# create train dataset & loader
train_dataset = CPDataset(opt)
train_loader = CPDataLoader(opt, train_dataset)
# Model
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
D = define_D(input_nc=input1_nc + input2_nc + opt.output_nc, Ddownx2 = opt.Ddownx2, Ddropout = opt.Ddropout, n_layers_D=3, spectral = opt.spectral, num_D = opt.num_D)
tocg = ConditionGenerator(opt, input1_nc=4, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
# Load Checkpoint
load_checkpoint(D, opt.D_checkpoint)
load_checkpoint(tocg, opt.tocg_checkpoint)
M = get_const(opt, train_loader, tocg, D, length = len(train_dataset))
print("M:", M)
if __name__ == "__main__":
main() |