File size: 25,378 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import torch
import torch.nn as nn

from torchvision.utils import make_grid
from networks import make_grid as mkgrid

import argparse
import os
import time
from cp_dataset import CPDataset, CPDatasetTest, CPDataLoader
from networks import ConditionGenerator, VGGLoss, GANLoss, load_checkpoint, save_checkpoint, define_D
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils import *
from torch.utils.data import Subset


def iou_metric(y_pred_batch, y_true_batch):
    B = y_pred_batch.shape[0]
    iou = 0
    for i in range(B):
        y_pred = y_pred_batch[i]
        y_true = y_true_batch[i]
        # y_pred is not one-hot, so need to threshold it
        y_pred = y_pred > 0.5
        
        y_pred = y_pred.flatten()
        y_true = y_true.flatten()

    
        intersection = torch.sum(y_pred[y_true == 1])
        union = torch.sum(y_pred) + torch.sum(y_true)

    
        iou += (intersection + 1e-7) / (union - intersection + 1e-7) / B
    return iou

def remove_overlap(seg_out, warped_cm):
    
    assert len(warped_cm.shape) == 4
    
    warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
    return warped_cm

def get_opt():
    parser = argparse.ArgumentParser()

    parser.add_argument("--name", default="test")
    parser.add_argument("--gpu_ids", default="")
    parser.add_argument('-j', '--workers', type=int, default=4)
    parser.add_argument('-b', '--batch-size', type=int, default=8)
    parser.add_argument('--fp16', action='store_true', help='use amp')

    parser.add_argument("--dataroot", default="./data/")
    parser.add_argument("--datamode", default="train")
    parser.add_argument("--data_list", default="train_pairs.txt")
    parser.add_argument("--fine_width", type=int, default=192)
    parser.add_argument("--fine_height", type=int, default=256)

    parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
    parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
    parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')

    parser.add_argument("--tensorboard_count", type=int, default=100)
    parser.add_argument("--display_count", type=int, default=100)
    parser.add_argument("--save_count", type=int, default=10000)
    parser.add_argument("--load_step", type=int, default=0)
    parser.add_argument("--keep_step", type=int, default=300000)
    parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
    parser.add_argument("--semantic_nc", type=int, default=13)
    parser.add_argument("--output_nc", type=int, default=13)
    
    # network
    parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
    parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
    parser.add_argument('--Ddownx2', action='store_true', help="Downsample D's input to increase the receptive field")  
    parser.add_argument('--Ddropout', action='store_true', help="Apply dropout to D")
    parser.add_argument('--num_D', type=int, default=2, help='Generator ngf')
    # Cuda availability
    parser.add_argument('--cuda',default=False, help='cuda or cpu')
    # training
    parser.add_argument("--G_D_seperate", action='store_true')
    parser.add_argument("--no_GAN_loss", action='store_true')
    parser.add_argument("--lasttvonly", action='store_true')
    parser.add_argument("--interflowloss", action='store_true', help="Intermediate flow loss")
    parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
    parser.add_argument('--edgeawaretv', type=str, choices=['no_edge', 'last_only', 'weighted'], default="no_edge", help="Edge aware TV loss")
    parser.add_argument('--add_lasttv', action='store_true')
    
    # test visualize
    parser.add_argument("--no_test_visualize", action='store_true')    
    parser.add_argument("--num_test_visualize", type=int, default=3)
    parser.add_argument("--test_datasetting", default="unpaired")
    parser.add_argument("--test_dataroot", default="./data/")
    parser.add_argument("--test_data_list", default="test_pairs.txt")
    

    # Hyper-parameters
    parser.add_argument('--G_lr', type=float, default=0.0002, help='Generator initial learning rate for adam')
    parser.add_argument('--D_lr', type=float, default=0.0002, help='Discriminator initial learning rate for adam')
    parser.add_argument('--CElamda', type=float, default=10, help='initial learning rate for adam')
    parser.add_argument('--GANlambda', type=float, default=1)
    parser.add_argument('--tvlambda', type=float, default=2)
    parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
    parser.add_argument('--val_count', type=int, default='1000')
    parser.add_argument('--spectral', action='store_true', help="Apply spectral normalization to D")
    parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")
    
    opt = parser.parse_args()
    return opt


def train(opt, train_loader, test_loader, val_loader, board, tocg, D):
    # Model
    tocg.cuda()
    tocg.train()
    D.cuda()
    D.train()

    # criterion
    criterionL1 = nn.L1Loss()
    criterionVGG = VGGLoss(opt)
    if opt.fp16:
        criterionGAN = GANLoss(use_lsgan=True, tensor=torch.cuda.HalfTensor)
    else :
        criterionGAN = GANLoss(use_lsgan=True, tensor=torch.cuda.FloatTensor if opt.gpu_ids else torch.Tensor)

    # optimizer
    optimizer_G = torch.optim.Adam(tocg.parameters(), lr=opt.G_lr, betas=(0.5, 0.999))
    optimizer_D = torch.optim.Adam(D.parameters(), lr=opt.D_lr, betas=(0.5, 0.999))
    

    for step in tqdm(range(opt.load_step, opt.keep_step)):
        iter_start_time = time.time()
        inputs = train_loader.next_batch()

        # input1
        c_paired = inputs['cloth']['paired'].cuda()
        cm_paired = inputs['cloth_mask']['paired'].cuda()
        cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        # input2
        parse_agnostic = inputs['parse_agnostic'].cuda()
        densepose = inputs['densepose'].cuda()
        openpose = inputs['pose'].cuda()
        # GT
        label_onehot = inputs['parse_onehot'].cuda()  # CE
        label = inputs['parse'].cuda()  # GAN loss
        parse_cloth_mask = inputs['pcm'].cuda()  # L1
        im_c = inputs['parse_cloth'].cuda()  # VGG
        # visualization
        im = inputs['image']

        # inputs
        input1 = torch.cat([c_paired, cm_paired], 1)
        input2 = torch.cat([parse_agnostic, densepose], 1)

        # forward
        flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
        
        # warped cloth mask one hot 
        
        warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
        # fake segmap cloth channel * warped clothmask
        if opt.clothmask_composition != 'no_composition':
            if opt.clothmask_composition == 'detach':
                cloth_mask = torch.ones_like(fake_segmap.detach())
                cloth_mask[:, 3:4, :, :] = warped_cm_onehot
                fake_segmap = fake_segmap * cloth_mask
                
            if opt.clothmask_composition == 'warp_grad':
                cloth_mask = torch.ones_like(fake_segmap.detach())
                cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
                fake_segmap = fake_segmap * cloth_mask
        if opt.occlusion:
            warped_clothmask_paired = remove_overlap(F.softmax(fake_segmap, dim=1), warped_clothmask_paired)
            warped_cloth_paired = warped_cloth_paired * warped_clothmask_paired + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask_paired)
        
        # generated fake cloth mask & misalign mask
        fake_clothmask = (torch.argmax(fake_segmap.detach(), dim=1, keepdim=True) == 3).long()
        misalign = fake_clothmask - warped_cm_onehot
        misalign[misalign < 0.0] = 0.0
        
        # loss warping
        loss_l1_cloth = criterionL1(warped_clothmask_paired, parse_cloth_mask)
        loss_vgg = criterionVGG(warped_cloth_paired, im_c)

        loss_tv = 0
        
        if opt.edgeawaretv == 'no_edge':
            if not opt.lasttvonly:
                for flow in flow_list:
                    y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
                    x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
                    loss_tv = loss_tv + y_tv + x_tv
            else:
                for flow in flow_list[-1:]:
                    y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
                    x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
                    loss_tv = loss_tv + y_tv + x_tv
        else:
            if opt.edgeawaretv == 'last_only':
                flow = flow_list[-1]
                warped_clothmask_paired_down = F.interpolate(warped_clothmask_paired, flow.shape[1:3], mode='bilinear')
                y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :])
                x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :])
                mask_y = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, 1:, :, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :-1, :, :]))
                mask_x = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, 1:, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, :-1, :]))
                y_tv = y_tv * mask_y
                x_tv = x_tv * mask_x
                y_tv = y_tv.mean()
                x_tv = x_tv.mean()
                loss_tv = loss_tv + y_tv + x_tv
                
            elif opt.edgeawaretv == 'weighted':
                for i in range(5):
                    flow = flow_list[i]
                    warped_clothmask_paired_down = F.interpolate(warped_clothmask_paired, flow.shape[1:3], mode='bilinear')
                    y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :])
                    x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :])
                    mask_y = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, 1:, :, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :-1, :, :]))
                    mask_x = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, 1:, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, :-1, :]))
                    y_tv = y_tv * mask_y
                    x_tv = x_tv * mask_x
                    y_tv = y_tv.mean() / (2 ** (4-i))
                    x_tv = x_tv.mean() / (2 ** (4-i))
                    loss_tv = loss_tv + y_tv + x_tv
            
            if opt.add_lasttv:
                for flow in flow_list[-1:]:
                    y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
                    x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
                    loss_tv = loss_tv + y_tv + x_tv
            

        N, _, iH, iW = c_paired.size()
        # Intermediate flow loss
        if opt.interflowloss:
            for i in range(len(flow_list)-1):
                flow = flow_list[i]
                N, fH, fW, _ = flow.size()
                grid = mkgrid(N, iH, iW)
                flow = F.interpolate(flow.permute(0, 3, 1, 2), size = c_paired.shape[2:], mode=opt.upsample).permute(0, 2, 3, 1)
                flow_norm = torch.cat([flow[:, :, :, 0:1] / ((fW - 1.0) / 2.0), flow[:, :, :, 1:2] / ((fH - 1.0) / 2.0)], 3)
                warped_c = F.grid_sample(c_paired, flow_norm + grid, padding_mode='border')
                warped_cm = F.grid_sample(cm_paired, flow_norm + grid, padding_mode='border')
                warped_cm = remove_overlap(F.softmax(fake_segmap, dim=1), warped_cm)
                loss_l1_cloth += criterionL1(warped_cm, parse_cloth_mask) / (2 ** (4-i))
                loss_vgg += criterionVGG(warped_c, im_c) / (2 ** (4-i))
            
        # loss segmentation
        # generator
        CE_loss = cross_entropy2d(fake_segmap, label_onehot.transpose(0, 1)[0].long())
        
        if opt.no_GAN_loss:
            loss_G = (10 * loss_l1_cloth + loss_vgg + opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda)
            # step
            optimizer_G.zero_grad()
            loss_G.backward()
            optimizer_G.step()
        
        else:
            fake_segmap_softmax = torch.softmax(fake_segmap, 1)

            pred_segmap = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax), dim=1))
            
            loss_G_GAN = criterionGAN(pred_segmap, True)
            
            if not opt.G_D_seperate:  
                # discriminator
                fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax.detach()),dim=1))
                real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
                loss_D_fake = criterionGAN(fake_segmap_pred, False)
                loss_D_real = criterionGAN(real_segmap_pred, True)

                # loss sum
                loss_G = (10 * loss_l1_cloth + loss_vgg +opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda + loss_G_GAN * opt.GANlambda)  # warping + seg_generation
                loss_D = loss_D_fake + loss_D_real

                # step
                optimizer_G.zero_grad()
                loss_G.backward()
                optimizer_G.step()
                
                optimizer_D.zero_grad()
                loss_D.backward()
                optimizer_D.step()
                
            else: # train G first after that train D
                # loss G sum
                loss_G = (10 * loss_l1_cloth + loss_vgg + opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda + loss_G_GAN * opt.GANlambda)  # warping + seg_generation
                
                # step G
                optimizer_G.zero_grad()
                loss_G.backward()
                optimizer_G.step()
                
                # discriminator
                with torch.no_grad():
                    _, fake_segmap, _, _ = tocg(input1, input2)
                fake_segmap_softmax = torch.softmax(fake_segmap, 1)
                
                # loss discriminator
                fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax.detach()),dim=1))
                real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
                loss_D_fake = criterionGAN(fake_segmap_pred, False)
                loss_D_real = criterionGAN(real_segmap_pred, True)
                
                loss_D = loss_D_fake + loss_D_real
                
                optimizer_D.zero_grad()
                loss_D.backward()
                optimizer_D.step()
        # Vaildation
        if (step + 1) % opt.val_count == 0:
            tocg.eval()
            iou_list = []
            with torch.no_grad():
                for cnt in range(2000//opt.batch_size):
                
                    inputs = val_loader.next_batch()
                    # input1
                    c_paired = inputs['cloth']['paired'].cuda()
                    cm_paired = inputs['cloth_mask']['paired'].cuda()
                    cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
                    # input2
                    parse_agnostic = inputs['parse_agnostic'].cuda()
                    densepose = inputs['densepose'].cuda()
                    openpose = inputs['pose'].cuda()
                    # GT
                    label_onehot = inputs['parse_onehot'].cuda()  # CE
                    label = inputs['parse'].cuda()  # GAN loss
                    parse_cloth_mask = inputs['pcm'].cuda()  # L1
                    im_c = inputs['parse_cloth'].cuda()  # VGG
                    # visualization
                    im = inputs['image']
                    
                    input1 = torch.cat([c_paired, cm_paired], 1)
                    input2 = torch.cat([parse_agnostic, densepose], 1)
                    
                    # forward
                    flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
                
                    # fake segmap cloth channel * warped clothmask
                    if opt.clothmask_composition != 'no_composition':
                        if opt.clothmask_composition == 'detach':
                            cloth_mask = torch.ones_like(fake_segmap.detach())
                            cloth_mask[:, 3:4, :, :] = warped_cm_onehot
                            fake_segmap = fake_segmap * cloth_mask
                            
                        if opt.clothmask_composition == 'warp_grad':
                            cloth_mask = torch.ones_like(fake_segmap.detach())
                            cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
                            fake_segmap = fake_segmap * cloth_mask
    
                    # calculate iou
                    iou = iou_metric(F.softmax(fake_segmap, dim=1).detach(), label)
                    iou_list.append(iou.item())

            tocg.train()
            board.add_scalar('val/iou', np.mean(iou_list), step + 1)
        
        # tensorboard
        if (step + 1) % opt.tensorboard_count == 0:
            # loss G
            board.add_scalar('Loss/G', loss_G.item(), step + 1)
            board.add_scalar('Loss/G/l1_cloth', loss_l1_cloth.item(), step + 1)
            board.add_scalar('Loss/G/vgg', loss_vgg.item(), step + 1)
            board.add_scalar('Loss/G/tv', loss_tv.item(), step + 1)
            board.add_scalar('Loss/G/CE', CE_loss.item(), step + 1)
            if not opt.no_GAN_loss:
                board.add_scalar('Loss/G/GAN', loss_G_GAN.item(), step + 1)
                # loss D
                board.add_scalar('Loss/D', loss_D.item(), step + 1)
                board.add_scalar('Loss/D/pred_real', loss_D_real.item(), step + 1)
                board.add_scalar('Loss/D/pred_fake', loss_D_fake.item(), step + 1)
            
            grid = make_grid([(c_paired[0].cpu() / 2 + 0.5), (cm_paired[0].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu()), ((densepose.cpu()[0]+1)/2),
                              (im_c[0].cpu() / 2 + 0.5), parse_cloth_mask[0].cpu().expand(3, -1, -1), (warped_cloth_paired[0].cpu().detach() / 2 + 0.5), (warped_cm_onehot[0].cpu().detach()).expand(3, -1, -1),
                              visualize_segmap(label.cpu()), visualize_segmap(fake_segmap.cpu()), (im[0]/2 +0.5), (misalign[0].cpu().detach()).expand(3, -1, -1)],
                                nrow=4)
            board.add_images('train_images', grid.unsqueeze(0), step + 1)
            
            if not opt.no_test_visualize:
                inputs = test_loader.next_batch()
                # input1
                c_paired = inputs['cloth'][opt.test_datasetting].cuda()
                cm_paired = inputs['cloth_mask'][opt.test_datasetting].cuda()
                cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
                # input2
                parse_agnostic = inputs['parse_agnostic'].cuda()
                densepose = inputs['densepose'].cuda()
                openpose = inputs['pose'].cuda()
                # GT
                label_onehot = inputs['parse_onehot'].cuda()  # CE
                label = inputs['parse'].cuda()  # GAN loss
                parse_cloth_mask = inputs['pcm'].cuda()  # L1
                im_c = inputs['parse_cloth'].cuda()  # VGG
                # visualization
                im = inputs['image']

                tocg.eval()
                with torch.no_grad():
                    # inputs
                    input1 = torch.cat([c_paired, cm_paired], 1)
                    input2 = torch.cat([parse_agnostic, densepose], 1)

                    # forward
                    flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
                    
                    warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
                    if opt.clothmask_composition != 'no_composition':
                        if opt.clothmask_composition == 'detach':
                            cloth_mask = torch.ones_like(fake_segmap)
                            cloth_mask[:,3:4, :, :] = warped_cm_onehot
                            fake_segmap = fake_segmap * cloth_mask
                            
                        if opt.clothmask_composition == 'warp_grad':
                            cloth_mask = torch.ones_like(fake_segmap)
                            cloth_mask[:,3:4, :, :] = warped_clothmask_paired
                            fake_segmap = fake_segmap * cloth_mask
                    if opt.occlusion:
                        warped_clothmask_paired = remove_overlap(F.softmax(fake_segmap, dim=1), warped_clothmask_paired)
                        warped_cloth_paired = warped_cloth_paired * warped_clothmask_paired + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask_paired)
                    
                    # generated fake cloth mask & misalign mask
                    fake_clothmask = (torch.argmax(fake_segmap.detach(), dim=1, keepdim=True) == 3).long()
                    misalign = fake_clothmask - warped_cm_onehot
                    misalign[misalign < 0.0] = 0.0
                
                for i in range(opt.num_test_visualize):
                    grid = make_grid([(c_paired[i].cpu() / 2 + 0.5), (cm_paired[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
                                    (im_c[i].cpu() / 2 + 0.5), parse_cloth_mask[i].cpu().expand(3, -1, -1), (warped_cloth_paired[i].cpu().detach() / 2 + 0.5), (warped_cm_onehot[i].cpu().detach()).expand(3, -1, -1),
                                    visualize_segmap(label.cpu(), batch=i), visualize_segmap(fake_segmap.cpu(), batch=i), (im[i]/2 +0.5), (misalign[i].cpu().detach()).expand(3, -1, -1)],
                                        nrow=4)
                    board.add_images(f'test_images/{i}', grid.unsqueeze(0), step + 1)
                tocg.train()
        
        # display
        if (step + 1) % opt.display_count == 0:
            t = time.time() - iter_start_time
            if not opt.no_GAN_loss:
                print("step: %8d, time: %.3f\nloss G: %.4f, L1_cloth loss: %.4f, VGG loss: %.4f, TV loss: %.4f CE: %.4f, G GAN: %.4f\nloss D: %.4f, D real: %.4f, D fake: %.4f"
                    % (step + 1, t, loss_G.item(), loss_l1_cloth.item(), loss_vgg.item(), loss_tv.item(), CE_loss.item(), loss_G_GAN.item(), loss_D.item(), loss_D_real.item(), loss_D_fake.item()), flush=True)

        # save
        if (step + 1) % opt.save_count == 0:
            save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_step_%06d.pth' % (step + 1)),opt)
            save_checkpoint(D, os.path.join(opt.checkpoint_dir, opt.name, 'D_step_%06d.pth' % (step + 1)),opt)

def main():
    opt = get_opt()
    print(opt)
    print("Start to train %s!" % opt.name)
    os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
    
    # create train dataset & loader
    train_dataset = CPDataset(opt)
    train_loader = CPDataLoader(opt, train_dataset)
    
    # create test dataset & loader
    test_loader = None
    if not opt.no_test_visualize:
        train_bsize = opt.batch_size
        opt.batch_size = opt.num_test_visualize
        opt.dataroot = opt.test_dataroot
        opt.datamode = 'test'
        opt.data_list = opt.test_data_list
        test_dataset = CPDatasetTest(opt)
        opt.batch_size = train_bsize
        val_dataset = Subset(test_dataset, np.arange(2000))
        test_loader = CPDataLoader(opt, test_dataset)
        val_loader = CPDataLoader(opt, val_dataset)
    # visualization
    if not os.path.exists(opt.tensorboard_dir):
        os.makedirs(opt.tensorboard_dir)
    board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.name))

    # Model
    input1_nc = 4  # cloth + cloth-mask
    input2_nc = opt.semantic_nc + 3  # parse_agnostic + densepose
    tocg = ConditionGenerator(opt, input1_nc=4, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
    D = define_D(input_nc=input1_nc + input2_nc + opt.output_nc, Ddownx2 = opt.Ddownx2, Ddropout = opt.Ddropout, n_layers_D=3, spectral = opt.spectral, num_D = opt.num_D)
    
    # Load Checkpoint
    if not opt.tocg_checkpoint == '' and os.path.exists(opt.tocg_checkpoint):
        load_checkpoint(tocg, opt.tocg_checkpoint)

    # Train
    train(opt, train_loader, val_loader, test_loader, board, tocg, D)

    # Save Checkpoint
    save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_final.pth'),opt)
    save_checkpoint(D, os.path.join(opt.checkpoint_dir, opt.name, 'D_final.pth'),opt)
    print("Finished training %s!" % opt.name)


if __name__ == "__main__":
    main()