Spaces:
Running
Running
File size: 25,378 Bytes
8a6df40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import torch
import torch.nn as nn
from torchvision.utils import make_grid
from networks import make_grid as mkgrid
import argparse
import os
import time
from cp_dataset import CPDataset, CPDatasetTest, CPDataLoader
from networks import ConditionGenerator, VGGLoss, GANLoss, load_checkpoint, save_checkpoint, define_D
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils import *
from torch.utils.data import Subset
def iou_metric(y_pred_batch, y_true_batch):
B = y_pred_batch.shape[0]
iou = 0
for i in range(B):
y_pred = y_pred_batch[i]
y_true = y_true_batch[i]
# y_pred is not one-hot, so need to threshold it
y_pred = y_pred > 0.5
y_pred = y_pred.flatten()
y_true = y_true.flatten()
intersection = torch.sum(y_pred[y_true == 1])
union = torch.sum(y_pred) + torch.sum(y_true)
iou += (intersection + 1e-7) / (union - intersection + 1e-7) / B
return iou
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--name", default="test")
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=192)
parser.add_argument("--fine_height", type=int, default=256)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=10000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=300000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--semantic_nc", type=int, default=13)
parser.add_argument("--output_nc", type=int, default=13)
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
parser.add_argument('--Ddownx2', action='store_true', help="Downsample D's input to increase the receptive field")
parser.add_argument('--Ddropout', action='store_true', help="Apply dropout to D")
parser.add_argument('--num_D', type=int, default=2, help='Generator ngf')
# Cuda availability
parser.add_argument('--cuda',default=False, help='cuda or cpu')
# training
parser.add_argument("--G_D_seperate", action='store_true')
parser.add_argument("--no_GAN_loss", action='store_true')
parser.add_argument("--lasttvonly", action='store_true')
parser.add_argument("--interflowloss", action='store_true', help="Intermediate flow loss")
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
parser.add_argument('--edgeawaretv', type=str, choices=['no_edge', 'last_only', 'weighted'], default="no_edge", help="Edge aware TV loss")
parser.add_argument('--add_lasttv', action='store_true')
# test visualize
parser.add_argument("--no_test_visualize", action='store_true')
parser.add_argument("--num_test_visualize", type=int, default=3)
parser.add_argument("--test_datasetting", default="unpaired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0002, help='Generator initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0002, help='Discriminator initial learning rate for adam')
parser.add_argument('--CElamda', type=float, default=10, help='initial learning rate for adam')
parser.add_argument('--GANlambda', type=float, default=1)
parser.add_argument('--tvlambda', type=float, default=2)
parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
parser.add_argument('--val_count', type=int, default='1000')
parser.add_argument('--spectral', action='store_true', help="Apply spectral normalization to D")
parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")
opt = parser.parse_args()
return opt
def train(opt, train_loader, test_loader, val_loader, board, tocg, D):
# Model
tocg.cuda()
tocg.train()
D.cuda()
D.train()
# criterion
criterionL1 = nn.L1Loss()
criterionVGG = VGGLoss(opt)
if opt.fp16:
criterionGAN = GANLoss(use_lsgan=True, tensor=torch.cuda.HalfTensor)
else :
criterionGAN = GANLoss(use_lsgan=True, tensor=torch.cuda.FloatTensor if opt.gpu_ids else torch.Tensor)
# optimizer
optimizer_G = torch.optim.Adam(tocg.parameters(), lr=opt.G_lr, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(D.parameters(), lr=opt.D_lr, betas=(0.5, 0.999))
for step in tqdm(range(opt.load_step, opt.keep_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input1
c_paired = inputs['cloth']['paired'].cuda()
cm_paired = inputs['cloth_mask']['paired'].cuda()
cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
# input2
parse_agnostic = inputs['parse_agnostic'].cuda()
densepose = inputs['densepose'].cuda()
openpose = inputs['pose'].cuda()
# GT
label_onehot = inputs['parse_onehot'].cuda() # CE
label = inputs['parse'].cuda() # GAN loss
parse_cloth_mask = inputs['pcm'].cuda() # L1
im_c = inputs['parse_cloth'].cuda() # VGG
# visualization
im = inputs['image']
# inputs
input1 = torch.cat([c_paired, cm_paired], 1)
input2 = torch.cat([parse_agnostic, densepose], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
# fake segmap cloth channel * warped clothmask
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
if opt.occlusion:
warped_clothmask_paired = remove_overlap(F.softmax(fake_segmap, dim=1), warped_clothmask_paired)
warped_cloth_paired = warped_cloth_paired * warped_clothmask_paired + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask_paired)
# generated fake cloth mask & misalign mask
fake_clothmask = (torch.argmax(fake_segmap.detach(), dim=1, keepdim=True) == 3).long()
misalign = fake_clothmask - warped_cm_onehot
misalign[misalign < 0.0] = 0.0
# loss warping
loss_l1_cloth = criterionL1(warped_clothmask_paired, parse_cloth_mask)
loss_vgg = criterionVGG(warped_cloth_paired, im_c)
loss_tv = 0
if opt.edgeawaretv == 'no_edge':
if not opt.lasttvonly:
for flow in flow_list:
y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
loss_tv = loss_tv + y_tv + x_tv
else:
for flow in flow_list[-1:]:
y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
loss_tv = loss_tv + y_tv + x_tv
else:
if opt.edgeawaretv == 'last_only':
flow = flow_list[-1]
warped_clothmask_paired_down = F.interpolate(warped_clothmask_paired, flow.shape[1:3], mode='bilinear')
y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :])
x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :])
mask_y = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, 1:, :, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :-1, :, :]))
mask_x = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, 1:, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, :-1, :]))
y_tv = y_tv * mask_y
x_tv = x_tv * mask_x
y_tv = y_tv.mean()
x_tv = x_tv.mean()
loss_tv = loss_tv + y_tv + x_tv
elif opt.edgeawaretv == 'weighted':
for i in range(5):
flow = flow_list[i]
warped_clothmask_paired_down = F.interpolate(warped_clothmask_paired, flow.shape[1:3], mode='bilinear')
y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :])
x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :])
mask_y = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, 1:, :, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :-1, :, :]))
mask_x = torch.exp(-150*torch.abs(warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, 1:, :] - warped_clothmask_paired_down.permute(0, 2, 3, 1)[:, :, :-1, :]))
y_tv = y_tv * mask_y
x_tv = x_tv * mask_x
y_tv = y_tv.mean() / (2 ** (4-i))
x_tv = x_tv.mean() / (2 ** (4-i))
loss_tv = loss_tv + y_tv + x_tv
if opt.add_lasttv:
for flow in flow_list[-1:]:
y_tv = torch.abs(flow[:, 1:, :, :] - flow[:, :-1, :, :]).mean()
x_tv = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :]).mean()
loss_tv = loss_tv + y_tv + x_tv
N, _, iH, iW = c_paired.size()
# Intermediate flow loss
if opt.interflowloss:
for i in range(len(flow_list)-1):
flow = flow_list[i]
N, fH, fW, _ = flow.size()
grid = mkgrid(N, iH, iW)
flow = F.interpolate(flow.permute(0, 3, 1, 2), size = c_paired.shape[2:], mode=opt.upsample).permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((fW - 1.0) / 2.0), flow[:, :, :, 1:2] / ((fH - 1.0) / 2.0)], 3)
warped_c = F.grid_sample(c_paired, flow_norm + grid, padding_mode='border')
warped_cm = F.grid_sample(cm_paired, flow_norm + grid, padding_mode='border')
warped_cm = remove_overlap(F.softmax(fake_segmap, dim=1), warped_cm)
loss_l1_cloth += criterionL1(warped_cm, parse_cloth_mask) / (2 ** (4-i))
loss_vgg += criterionVGG(warped_c, im_c) / (2 ** (4-i))
# loss segmentation
# generator
CE_loss = cross_entropy2d(fake_segmap, label_onehot.transpose(0, 1)[0].long())
if opt.no_GAN_loss:
loss_G = (10 * loss_l1_cloth + loss_vgg + opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda)
# step
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
else:
fake_segmap_softmax = torch.softmax(fake_segmap, 1)
pred_segmap = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax), dim=1))
loss_G_GAN = criterionGAN(pred_segmap, True)
if not opt.G_D_seperate:
# discriminator
fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax.detach()),dim=1))
real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
loss_D_fake = criterionGAN(fake_segmap_pred, False)
loss_D_real = criterionGAN(real_segmap_pred, True)
# loss sum
loss_G = (10 * loss_l1_cloth + loss_vgg +opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda + loss_G_GAN * opt.GANlambda) # warping + seg_generation
loss_D = loss_D_fake + loss_D_real
# step
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
else: # train G first after that train D
# loss G sum
loss_G = (10 * loss_l1_cloth + loss_vgg + opt.tvlambda * loss_tv) + (CE_loss * opt.CElamda + loss_G_GAN * opt.GANlambda) # warping + seg_generation
# step G
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
# discriminator
with torch.no_grad():
_, fake_segmap, _, _ = tocg(input1, input2)
fake_segmap_softmax = torch.softmax(fake_segmap, 1)
# loss discriminator
fake_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), fake_segmap_softmax.detach()),dim=1))
real_segmap_pred = D(torch.cat((input1.detach(), input2.detach(), label),dim=1))
loss_D_fake = criterionGAN(fake_segmap_pred, False)
loss_D_real = criterionGAN(real_segmap_pred, True)
loss_D = loss_D_fake + loss_D_real
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
# Vaildation
if (step + 1) % opt.val_count == 0:
tocg.eval()
iou_list = []
with torch.no_grad():
for cnt in range(2000//opt.batch_size):
inputs = val_loader.next_batch()
# input1
c_paired = inputs['cloth']['paired'].cuda()
cm_paired = inputs['cloth_mask']['paired'].cuda()
cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
# input2
parse_agnostic = inputs['parse_agnostic'].cuda()
densepose = inputs['densepose'].cuda()
openpose = inputs['pose'].cuda()
# GT
label_onehot = inputs['parse_onehot'].cuda() # CE
label = inputs['parse'].cuda() # GAN loss
parse_cloth_mask = inputs['pcm'].cuda() # L1
im_c = inputs['parse_cloth'].cuda() # VGG
# visualization
im = inputs['image']
input1 = torch.cat([c_paired, cm_paired], 1)
input2 = torch.cat([parse_agnostic, densepose], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
# fake segmap cloth channel * warped clothmask
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap.detach())
cloth_mask[:, 3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# calculate iou
iou = iou_metric(F.softmax(fake_segmap, dim=1).detach(), label)
iou_list.append(iou.item())
tocg.train()
board.add_scalar('val/iou', np.mean(iou_list), step + 1)
# tensorboard
if (step + 1) % opt.tensorboard_count == 0:
# loss G
board.add_scalar('Loss/G', loss_G.item(), step + 1)
board.add_scalar('Loss/G/l1_cloth', loss_l1_cloth.item(), step + 1)
board.add_scalar('Loss/G/vgg', loss_vgg.item(), step + 1)
board.add_scalar('Loss/G/tv', loss_tv.item(), step + 1)
board.add_scalar('Loss/G/CE', CE_loss.item(), step + 1)
if not opt.no_GAN_loss:
board.add_scalar('Loss/G/GAN', loss_G_GAN.item(), step + 1)
# loss D
board.add_scalar('Loss/D', loss_D.item(), step + 1)
board.add_scalar('Loss/D/pred_real', loss_D_real.item(), step + 1)
board.add_scalar('Loss/D/pred_fake', loss_D_fake.item(), step + 1)
grid = make_grid([(c_paired[0].cpu() / 2 + 0.5), (cm_paired[0].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu()), ((densepose.cpu()[0]+1)/2),
(im_c[0].cpu() / 2 + 0.5), parse_cloth_mask[0].cpu().expand(3, -1, -1), (warped_cloth_paired[0].cpu().detach() / 2 + 0.5), (warped_cm_onehot[0].cpu().detach()).expand(3, -1, -1),
visualize_segmap(label.cpu()), visualize_segmap(fake_segmap.cpu()), (im[0]/2 +0.5), (misalign[0].cpu().detach()).expand(3, -1, -1)],
nrow=4)
board.add_images('train_images', grid.unsqueeze(0), step + 1)
if not opt.no_test_visualize:
inputs = test_loader.next_batch()
# input1
c_paired = inputs['cloth'][opt.test_datasetting].cuda()
cm_paired = inputs['cloth_mask'][opt.test_datasetting].cuda()
cm_paired = torch.FloatTensor((cm_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
# input2
parse_agnostic = inputs['parse_agnostic'].cuda()
densepose = inputs['densepose'].cuda()
openpose = inputs['pose'].cuda()
# GT
label_onehot = inputs['parse_onehot'].cuda() # CE
label = inputs['parse'].cuda() # GAN loss
parse_cloth_mask = inputs['pcm'].cuda() # L1
im_c = inputs['parse_cloth'].cuda() # VGG
# visualization
im = inputs['image']
tocg.eval()
with torch.no_grad():
# inputs
input1 = torch.cat([c_paired, cm_paired], 1)
input2 = torch.cat([parse_agnostic, densepose], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(input1, input2)
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
if opt.occlusion:
warped_clothmask_paired = remove_overlap(F.softmax(fake_segmap, dim=1), warped_clothmask_paired)
warped_cloth_paired = warped_cloth_paired * warped_clothmask_paired + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask_paired)
# generated fake cloth mask & misalign mask
fake_clothmask = (torch.argmax(fake_segmap.detach(), dim=1, keepdim=True) == 3).long()
misalign = fake_clothmask - warped_cm_onehot
misalign[misalign < 0.0] = 0.0
for i in range(opt.num_test_visualize):
grid = make_grid([(c_paired[i].cpu() / 2 + 0.5), (cm_paired[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
(im_c[i].cpu() / 2 + 0.5), parse_cloth_mask[i].cpu().expand(3, -1, -1), (warped_cloth_paired[i].cpu().detach() / 2 + 0.5), (warped_cm_onehot[i].cpu().detach()).expand(3, -1, -1),
visualize_segmap(label.cpu(), batch=i), visualize_segmap(fake_segmap.cpu(), batch=i), (im[i]/2 +0.5), (misalign[i].cpu().detach()).expand(3, -1, -1)],
nrow=4)
board.add_images(f'test_images/{i}', grid.unsqueeze(0), step + 1)
tocg.train()
# display
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
if not opt.no_GAN_loss:
print("step: %8d, time: %.3f\nloss G: %.4f, L1_cloth loss: %.4f, VGG loss: %.4f, TV loss: %.4f CE: %.4f, G GAN: %.4f\nloss D: %.4f, D real: %.4f, D fake: %.4f"
% (step + 1, t, loss_G.item(), loss_l1_cloth.item(), loss_vgg.item(), loss_tv.item(), CE_loss.item(), loss_G_GAN.item(), loss_D.item(), loss_D_real.item(), loss_D_fake.item()), flush=True)
# save
if (step + 1) % opt.save_count == 0:
save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_step_%06d.pth' % (step + 1)),opt)
save_checkpoint(D, os.path.join(opt.checkpoint_dir, opt.name, 'D_step_%06d.pth' % (step + 1)),opt)
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
# create train dataset & loader
train_dataset = CPDataset(opt)
train_loader = CPDataLoader(opt, train_dataset)
# create test dataset & loader
test_loader = None
if not opt.no_test_visualize:
train_bsize = opt.batch_size
opt.batch_size = opt.num_test_visualize
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
opt.batch_size = train_bsize
val_dataset = Subset(test_dataset, np.arange(2000))
test_loader = CPDataLoader(opt, test_dataset)
val_loader = CPDataLoader(opt, val_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.name))
# Model
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=4, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
D = define_D(input_nc=input1_nc + input2_nc + opt.output_nc, Ddownx2 = opt.Ddownx2, Ddropout = opt.Ddropout, n_layers_D=3, spectral = opt.spectral, num_D = opt.num_D)
# Load Checkpoint
if not opt.tocg_checkpoint == '' and os.path.exists(opt.tocg_checkpoint):
load_checkpoint(tocg, opt.tocg_checkpoint)
# Train
train(opt, train_loader, val_loader, test_loader, board, tocg, D)
# Save Checkpoint
save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_final.pth'),opt)
save_checkpoint(D, os.path.join(opt.checkpoint_dir, opt.name, 'D_final.pth'),opt)
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main() |