Spaces:
Running
Running
File size: 34,358 Bytes
8a6df40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchvision.utils import make_grid as make_image_grid
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss
from sync_batchnorm import DataParallelWithCallback
from tensorboardX import SummaryWriter
from utils import create_network, visualize_segmap
import sys
from tqdm import tqdm
import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch_size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
# Cuda availability
parser.add_argument('--cuda',default=False, help='cuda or cpu')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument("--radius", type=int, default=20)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=10000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
# test
parser.add_argument("--lpips_count", type=int, default=1000)
parser.add_argument("--test_datasetting", default="paired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')
# SEAN-related hyper-parameters
parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
help='If \'more\', add upsampling layer between the two middle resnet blocks. '
'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss')
parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for feature matching loss')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
# D
parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
# Training
parser.add_argument('--GT', action='store_true')
parser.add_argument('--occlusion', action='store_true')
# tocg
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# visualize
parser.add_argument("--num_test_visualize", type=int, default=3)
opt = parser.parse_args()
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \
% (opt.batch_size, len(opt.gpu_ids))
return opt
def train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model):
"""
Train Generator
"""
# Model
if not opt.GT:
tocg.cuda()
tocg.eval()
generator.train()
discriminator.train()
model.eval()
# criterion
if opt.fp16:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
else:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
# criterionL1 = nn.L1Loss()
criterionFeat = nn.L1Loss()
criterionVGG = VGGLoss(opt)
# optimizer
optimizer_gen = torch.optim.Adam(generator.parameters(), lr=opt.G_lr, betas=(0, 0.9))
scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0, 0.9))
scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
if opt.fp16:
if not opt.GT:
from apex import amp
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
else:
from apex import amp
[generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
if len(opt.gpu_ids) > 0:
if not opt.GT:
tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW,opt)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
# occlusion
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
# region_mask = parse[:, 2:3] - warped_cm
# region_mask[region_mask < 0.0] = 0.0
# parse_rn = torch.cat((parse, region_mask), dim=1)
# parse_rn[:, 2:3] -= region_mask
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
# --------------------------------------------------------------------------------------------------------------
# Train the generator
# --------------------------------------------------------------------------------------------------------------
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
fake_concat = torch.cat((parse, output_paired), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
G_losses = {}
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)
if not opt.no_ganFeat_loss:
num_D = len(pred_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D): # for each discriminator
# last output is the final prediction, so we exclude it
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs): # for each layer output
unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
if not opt.no_vgg_loss:
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
loss_gen = sum(G_losses.values()).mean()
optimizer_gen.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
loss_gen_scaled.backward()
else:
loss_gen.backward()
optimizer_gen.step()
# --------------------------------------------------------------------------------------------------------------
# Train the discriminator
# --------------------------------------------------------------------------------------------------------------
with torch.no_grad():
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
output = output.detach()
output.requires_grad_()
fake_concat = torch.cat((parse, output), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
D_losses = {}
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
optimizer_dis.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
loss_dis_scaled.backward()
else:
loss_dis.backward()
optimizer_dis.step()
# --------------------------------------------------------------------------------------------------------------
# recording
# --------------------------------------------------------------------------------------------------------------
if (step + 1) % opt.tensorboard_count == 0:
i = 0
grid = make_image_grid([(c_paired[0].cpu() / 2 + 0.5), (cm[0].cpu()).expand(3, -1, -1), ((pose.cpu()[0]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images('train_images', grid.unsqueeze(0), step + 1)
board.add_scalar('Loss/gen', loss_gen.item(), step + 1)
board.add_scalar('Loss/gen/adv', G_losses['GAN'].mean().item(), step + 1)
#board.add_scalar('Loss/gen/l1', G_losses['L1'].mean().item(), step + 1)
board.add_scalar('Loss/gen/feat', G_losses['GAN_Feat'].mean().item(), step + 1)
board.add_scalar('Loss/gen/vgg', G_losses['VGG'].mean().item(), step + 1)
board.add_scalar('Loss/dis', loss_dis.item(), step + 1)
board.add_scalar('Loss/dis/adv_fake', D_losses['D_Fake'].mean().item(), step + 1)
board.add_scalar('Loss/dis/adv_real', D_losses['D_Real'].mean().item(), step + 1)
# unpaired visualize
generator.eval()
inputs = test_vis_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['unpaired'].cuda()
c_paired = inputs['cloth']['unpaired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW,opt)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
for i in range(opt.num_test_visualize):
grid = make_image_grid([(c_paired[i].cpu() / 2 + 0.5), (cm[i].cpu()).expand(3, -1, -1), ((pose.cpu()[i]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images(f'test_images/{i}', grid.unsqueeze(0), step + 1)
generator.train()
if (step + 1) % opt.lpips_count == 0:
generator.eval()
T2 = transforms.Compose([transforms.Resize((128, 128))])
lpips_list = []
avg_distance = 0.0
with torch.no_grad():
print("LPIPS")
for i in tqdm(range(500)):
inputs = test_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW,opt)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
avg_distance += model.forward(T2(im), T2(output_paired))
avg_distance = avg_distance / 500
print(f"LPIPS{avg_distance}")
board.add_scalar('test/LPIPS', avg_distance, step + 1)
generator.train()
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
% (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)
if (step + 1) % opt.save_count == 0:
save_checkpoint(generator.module, os.path.join(opt.checkpoint_dir, opt.name, 'gen_step_%06d.pth' % (step + 1)),opt)
save_checkpoint(discriminator.module, os.path.join(opt.checkpoint_dir, opt.name, 'dis_step_%06d.pth' % (step + 1)),opt)
if (step + 1) % 1000 == 0:
scheduler_gen.step()
scheduler_dis.step()
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
# create dataset
train_dataset = CPDataset(opt)
# create dataloader
train_loader = CPDataLoader(opt, train_dataset)
# test dataloader
opt.batch_size = 1
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
test_dataset = Subset(test_dataset, np.arange(500))
test_loader = CPDataLoader(opt, test_dataset)
# test vis loader
opt.batch_size = opt.num_test_visualize
test_vis_dataset = CPDatasetTest(opt)
test_vis_loader = CPDataLoader(opt, test_vis_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.name))
# warping-seg Model
tocg = None
if not opt.GT:
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=96, norm_layer=nn.BatchNorm2d)
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint)
# Generator model
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
generator.cuda()
generator.init_weights(opt.init_type, opt.init_variance)
discriminator = create_network(MultiscaleDiscriminator, opt)
# lpips
model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)
# Load Checkpoint
if not opt.gen_checkpoint == '' and os.path.exists(opt.gen_checkpoint):
load_checkpoint(generator, opt.gen_checkpoint)
load_checkpoint(discriminator, opt.dis_checkpoint)
# Train
train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model)
# Save Checkpoint
save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'),opt)
save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'),opt)
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main()
|