Spaces:
Sleeping
Sleeping
| import re | |
| def preprocess_arabic_text(text): | |
| # Remove diacritics | |
| text = re.sub(r'[\u064B-\u0652]', '', text) | |
| # Remove punctuation and non-Arabic characters | |
| text = re.sub(r'[^\u0600-\u06FF\s]', '', text) | |
| # Normalize Arabic letters | |
| text = re.sub(r'\u0629', '\u0647', text) # Replace Teh Marbuta with Heh | |
| text = re.sub(r'\u064A', '\u0649', text) # Replace Yeh with Alef Maqsura | |
| # Remove diacritics (optional, depending on use case) | |
| text = re.sub(r'[\u064B-\u065F]', '', text) | |
| # Normalize elongated letters (e.g., "جدااا" -> "جدا") | |
| text = re.sub(r'(.)\1{2,}', r'\1\1', text) | |
| # Remove non-Arabic characters (e.g., English words, numbers, special symbols) | |
| text = re.sub(r'[^\u0600-\u06FF\s]', '', text) | |
| # Normalize whitespace | |
| text = re.sub(r'\s+', ' ', text).strip() | |
| return text | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| # Load the tokenizer and model | |
| # model_name = 'aubmindlab/bert-base-arabertv02' | |
| model_name = 'aubmindlab/bert-base-arabertv02-twitter' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) | |
| def analyze_sentiment(text): | |
| inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| predicted_class = torch.argmax(logits, dim=1).item() | |
| sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'} | |
| return sentiment_map[predicted_class] | |
| import gradio as gr | |
| def process_text_and_analyze_sentiment(text): | |
| preprocessed_text = preprocess_arabic_text(text) | |
| sentiment = analyze_sentiment(preprocessed_text) | |
| return preprocessed_text, sentiment | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=process_text_and_analyze_sentiment, | |
| inputs=gr.Textbox(label="Enter Arabic Text"), | |
| outputs=[ | |
| gr.Textbox(label="Preprocessed Text"), | |
| gr.Textbox(label="Sentiment") | |
| ], | |
| title="Arabic Text Analysis", | |
| description="This application preprocesses Arabic text using regex and analyzes sentiment using a pre-trained model." | |
| ) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| iface.launch(share=True) | |