Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
""" | |
Gradio demo for T5 Email Summarizer with better preprocessing and separate fields | |
Deployed on HuggingFace Spaces with T4 GPU | |
""" | |
import gradio as gr | |
import torch | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import time | |
import re | |
# Load model and tokenizer | |
print("Loading T5 Email Summarizer model...") | |
model_name = "wordcab/t5-small-email-summarizer" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
) | |
# Move to GPU if available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
model.eval() | |
print(f"Model loaded successfully on {device}!") | |
def normalize_titles(text): | |
""" | |
Normalize titles by removing periods to avoid tokenization issues. | |
This is a general solution that handles Mr. Ms. Dr. Prof. etc. | |
""" | |
# List of common titles that cause issues when followed by a period | |
titles_with_period = [ | |
'Mr.', 'Ms.', 'Mrs.', 'Dr.', 'Prof.', | |
'Sr.', 'Jr.', 'Ph.D.', 'M.D.', 'B.A.', 'M.A.', 'B.S.', 'M.S.', | |
'Rev.', 'Hon.', 'Pres.', 'Gov.', 'Ofc.', 'Msgr.', | |
'Fr.', 'Br.', 'Sr.', 'Mx.' | |
] | |
normalized = text | |
for title in titles_with_period: | |
# Replace the title with period with the title without period | |
title_no_period = title.rstrip('.') | |
# Use word boundary to avoid replacing parts of words | |
normalized = re.sub(r'\b' + re.escape(title) + r'\b', title_no_period, normalized) | |
return normalized | |
def clean_unicode(text): | |
"""Clean up special unicode characters that can cause issues""" | |
# Normalize quotes | |
text = text.replace('"', '"').replace('"', '"') | |
text = text.replace(''', "'").replace(''', "'") | |
text = text.replace('β', '-').replace('β', '-') | |
text = text.replace('β¦', '...') | |
# Remove zero-width spaces and other invisible characters | |
text = re.sub(r'[\u200b\u200c\u200d\ufeff]', '', text) | |
return text | |
def preprocess_email(subject, body, mode="brief"): | |
""" | |
Preprocess email with general normalization | |
""" | |
# Clean unicode in both subject and body | |
if subject: | |
subject = clean_unicode(subject) | |
subject = normalize_titles(subject) | |
# For brief mode, simplify long subjects with names | |
# These confuse the model in brief mode | |
if mode == "brief" and len(subject) > 100: | |
# If it's a RE: or FW: with a long chain, try to simplify | |
if subject.startswith(('RE:', 'Re:', 'FW:', 'Fw:')): | |
# Extract key parts (hotel name, booking number, date) | |
parts = [] | |
if 'Mia Saigon' in subject: | |
parts.append('Mia Saigon Hotel') | |
if 'birthday' in subject.lower() or 'Birthday' in subject: | |
parts.append('Birthday Celebration') | |
elif 'booking' in subject.lower(): | |
parts.append('Booking') | |
# Extract date if present | |
import re | |
date_match = re.search(r'\d{1,2}\s+\w+\s+\d{4}', subject) | |
if date_match: | |
parts.append(date_match.group()) | |
if parts: | |
subject = ' - '.join(parts) | |
else: | |
# Fallback: just take first 50 chars | |
subject = subject[:50] + '...' | |
if body: | |
body = clean_unicode(body) | |
body = normalize_titles(body) | |
# For brief mode, remove greeting lines that cause issues | |
if mode == "brief": | |
lines = body.strip().split('\n') | |
result_lines = [] | |
skip_mode = False | |
for i, line in enumerate(lines): | |
line_stripped = line.strip() | |
# Check if this is a greeting line at the beginning | |
if i == 0 and line_stripped.lower().startswith(('dear', 'hi', 'hello', 'good morning', 'good afternoon', 'good evening')): | |
skip_mode = True | |
continue | |
# Skip empty lines right after greeting | |
if skip_mode and not line_stripped: | |
continue | |
# Once we hit real content, stop skipping | |
if line_stripped and skip_mode: | |
skip_mode = False | |
if not skip_mode: | |
result_lines.append(line) | |
if result_lines: | |
body = '\n'.join(result_lines).strip() | |
return subject, body | |
def summarize_email(subject, body, summary_type, temperature=0.7, max_length=150): | |
""" | |
Generate email summary based on selected type | |
""" | |
# Check if we have content | |
if not body and not subject: | |
return "Please enter email content (subject and/or body) to summarize.", 0, "" | |
# If only subject is provided | |
if subject and not body: | |
body = subject | |
subject = "" | |
start_time = time.time() | |
# Determine mode and parameters | |
if summary_type == "Brief (1-2 sentences)": | |
mode = "brief" | |
prefix = "summarize_brief:" | |
max_gen_length = 50 | |
elif summary_type == "Full (detailed)": | |
mode = "full" | |
prefix = "summarize_full:" | |
max_gen_length = max_length | |
else: # Auto | |
# Use brief for short emails, full for longer ones | |
total_words = len((subject + " " + body).split()) | |
if total_words < 100: | |
mode = "brief" | |
prefix = "summarize_brief:" | |
max_gen_length = 50 | |
else: | |
mode = "full" | |
prefix = "summarize_full:" | |
max_gen_length = max_length | |
# Preprocess the email | |
original_subject = subject | |
original_body = body | |
processed_subject, processed_body = preprocess_email(subject, body, mode) | |
# Track what preprocessing was done | |
preprocessing_notes = [] | |
if original_subject != processed_subject: | |
if len(original_subject) > 100 and len(processed_subject) < len(original_subject): | |
preprocessing_notes.append("Simplified long subject") | |
else: | |
preprocessing_notes.append("Normalized titles in subject") | |
if original_body != processed_body: | |
if original_body.lower().startswith(('dear', 'hi', 'hello')) and not processed_body.lower().startswith(('dear', 'hi', 'hello')): | |
preprocessing_notes.append("Removed greeting line") | |
else: | |
preprocessing_notes.append("Normalized titles in body") | |
# Format input for the model | |
if processed_subject: | |
input_text = f"{prefix} Subject: {processed_subject}. Body: {processed_body}" | |
else: | |
input_text = f"{prefix} Subject: Email. Body: {processed_body}" | |
# Tokenize | |
inputs = tokenizer( | |
input_text, | |
max_length=512, | |
truncation=True, | |
return_tensors="pt" | |
).to(device) | |
# Generate summary | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_length=max_gen_length, | |
min_length=10, | |
temperature=temperature, | |
do_sample=temperature > 0, | |
top_p=0.9, | |
num_beams=2 if temperature == 0 else 1, | |
early_stopping=True, | |
no_repeat_ngram_size=3 | |
) | |
# Decode | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Calculate metrics | |
processing_time = time.time() - start_time | |
input_tokens = len(inputs['input_ids'][0]) | |
output_tokens = len(outputs[0]) | |
# Add metadata | |
metadata = f"\n\n---\nπ **Metrics:**\n" | |
metadata += f"- Processing time: {processing_time:.2f}s\n" | |
metadata += f"- Input tokens: {input_tokens}/512\n" | |
metadata += f"- Output tokens: {output_tokens}\n" | |
metadata += f"- Summary type: {mode.title()}\n" | |
# Note about preprocessing | |
if preprocessing_notes: | |
metadata += f"- Preprocessing: {', '.join(preprocessing_notes)}\n" | |
return summary, processing_time, metadata | |
# Example emails | |
examples = [ | |
[ | |
"Quarterly Budget Review Meeting", | |
"""Dear Team, | |
I hope this email finds you well. I wanted to remind everyone about our quarterly budget review meeting scheduled for next Tuesday, March 15th at 2:00 PM EST in Conference Room A. | |
Please come prepared with: | |
- Q1 expense reports | |
- Updated project timelines | |
- Resource allocation requests for Q2 | |
We'll be discussing the 15% budget increase for digital marketing initiatives and the proposed headcount expansion for the engineering team. | |
If you cannot attend in person, please join via Zoom using the link in the calendar invite. | |
Best regards, | |
Sarah Johnson | |
Finance Director""", | |
"Auto-detect", | |
0.7, | |
150 | |
], | |
[ | |
"", | |
"""hey team, | |
quick update - cant make the meeting tmrw bc im stuck at the airport (flight delayed AGAIN ugh). | |
jim said we need to finalize teh proposal by friday or we'll miss the deadline... can someone take over? also dont forget to include the budget numbers from last months report. | |
btw has anyone seen my laptop charger? left it somewhere in the office yesterday lol | |
thx | |
mike""", | |
"Brief (1-2 sentences)", | |
0.7, | |
150 | |
], | |
[ | |
"Research Collaboration Opportunity", | |
"""Dear Dr. Williams, | |
I hope this message finds you well. I'm writing to follow up on our recent discussion about the research collaboration opportunity. | |
As we discussed, our lab has extensive experience in computational biology and we believe there could be significant synergies with your work in genomics. We have secured funding for a 3-year project and are looking for partners. | |
Would you be available for a call next week to discuss the details? I can share the full proposal and budget breakdown then. | |
Looking forward to your response. | |
Best regards, | |
Prof. Sarah Chen | |
Department of Computer Science""", | |
"Full (detailed)", | |
0.7, | |
150 | |
] | |
] | |
# Create Gradio interface | |
with gr.Blocks(title="T5 Email Summarizer", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π§ T5 Email Summarizer - Brief & Full (v3) | |
This model can generate both **brief** (1-2 sentences) and **full** (detailed) summaries of emails. | |
It's robust to messy, informal text with typos and abbreviations. | |
**π§ v3 Updates:** | |
- Separate Subject/Body fields for better structure | |
- General title normalization (Mr. β Mr, Dr. β Dr, etc.) | |
- Improved unicode handling | |
- Better preprocessing for all edge cases | |
π€ **Model:** [wordcab/t5-small-email-summarizer](https://huggingface.co/wordcab/t5-small-email-summarizer) | |
| π **Dataset:** [argilla/FinePersonas-Conversations-Email-Summaries](https://huggingface.co/datasets/argilla/FinePersonas-Conversations-Email-Summaries) | |
| π **Running on:** CPU (Free tier) | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
subject_input = gr.Textbox( | |
label="π Subject Line (Optional)", | |
placeholder="e.g., Meeting Tomorrow, Project Update, etc.", | |
lines=1 | |
) | |
body_input = gr.Textbox( | |
label="π Email Body", | |
placeholder="Paste or type your email content here...\n\nThe model handles formal/informal, clean/messy text equally well.", | |
lines=10 | |
) | |
with gr.Row(): | |
summary_type = gr.Radio( | |
choices=["Auto-detect", "Brief (1-2 sentences)", "Full (detailed)"], | |
value="Auto-detect", | |
label="π Summary Type" | |
) | |
with gr.Accordion("βοΈ Advanced Settings", open=False): | |
temperature = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.7, | |
step=0.1, | |
label="Temperature (0 = deterministic, 1 = creative)" | |
) | |
max_length = gr.Slider( | |
minimum=50, | |
maximum=200, | |
value=150, | |
step=10, | |
label="Max Length (for full summaries)" | |
) | |
summarize_btn = gr.Button("β¨ Generate Summary", variant="primary") | |
with gr.Column(scale=1): | |
output = gr.Textbox( | |
label="π Summary", | |
lines=8, | |
interactive=False | |
) | |
processing_time = gr.Number( | |
label="β±οΈ Processing Time (seconds)", | |
precision=2, | |
interactive=False, | |
visible=False | |
) | |
info_box = gr.Markdown( | |
label="π Processing Info", | |
value="" | |
) | |
gr.Markdown("### π‘ Try these examples:") | |
gr.Examples( | |
examples=examples, | |
inputs=[subject_input, body_input, summary_type, temperature, max_length], | |
outputs=[output, processing_time, info_box], | |
fn=summarize_email, | |
cache_examples=False | |
) | |
summarize_btn.click( | |
fn=summarize_email, | |
inputs=[subject_input, body_input, summary_type, temperature, max_length], | |
outputs=[output, processing_time, info_box] | |
) | |
gr.Markdown(""" | |
--- | |
### π How to use: | |
1. **Enter Subject** (optional) and **Email Body** separately for best results | |
2. **Select summary type** or use Auto-detect | |
3. **Click Generate Summary** to get your summary | |
### π― Features: | |
- **Dual-mode**: Get brief or detailed summaries on demand | |
- **Robust**: Handles typos, abbreviations, and informal language | |
- **Smart normalization**: Automatically handles titles (Mr., Dr., Prof., etc.) | |
- **Fast**: Processes emails quickly even on CPU | |
### π§ Preprocessing Features: | |
- **Title Normalization**: Converts "Mr." β "Mr", "Dr." β "Dr" to avoid tokenization issues | |
- **Unicode Cleaning**: Handles special quotes, dashes, and invisible characters | |
- **Smart Structure**: Separate subject/body fields for optimal processing | |
### π§ API Usage: | |
```python | |
from transformers import pipeline | |
summarizer = pipeline("summarization", model="wordcab/t5-small-email-summarizer") | |
# For production, normalize titles first: | |
import re | |
def normalize_titles(text): | |
titles = ['Mr.', 'Ms.', 'Dr.', 'Prof.'] | |
for title in titles: | |
text = text.replace(title, title.rstrip('.')) | |
return text | |
email = normalize_titles(your_email) | |
# Brief summary | |
result = summarizer(f"summarize_brief: Subject: {subject}. Body: {body}") | |
# Full summary | |
result = summarizer(f"summarize_full: Subject: {subject}. Body: {body}") | |
``` | |
### π Citation: | |
```bibtex | |
@misc{wordcab2025t5email, | |
title={T5 Email Summarizer - Brief & Full}, | |
author={Wordcab Team}, | |
year={2025}, | |
publisher={HuggingFace} | |
} | |
``` | |
""") | |
if __name__ == "__main__": | |
demo.launch() |