File size: 21,056 Bytes
bcb05d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

ACTIVATION_FUNCTIONS = {
    "swish": nn.SiLU(),
    "silu": nn.SiLU(),
    "mish": nn.Mish(),
    "gelu": nn.GELU(),
    "relu": nn.ReLU(),
}

def get_activation(act_fn: str) -> nn.Module:

    act_fn = act_fn.lower()
    if act_fn in ACTIVATION_FUNCTIONS:
        return ACTIVATION_FUNCTIONS[act_fn]
    else:
        raise ValueError(f"Unsupported activation function: {act_fn}")

def get_down_block(
    down_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    add_downsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    resnet_groups: Optional[int] = None,
    downsample_padding: Optional[int] = None,
    dropout: float = 0.0,
) -> Union[
    "DownBlock3D",
]:
    if down_block_type == "DownBlock3D":
        return DownBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            dropout=dropout,
        )

    raise ValueError(f"{down_block_type} does not exist.")

def get_up_block(
    up_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    prev_output_channel: int,
    add_upsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    resnet_groups: Optional[int] = None,
    dropout: float = 0.0,
) -> Union[
    "UpBlock3D",
]:
    if up_block_type == "UpBlock3D":
        return UpBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            dropout=dropout,
        )
    raise ValueError(f"{up_block_type} does not exist.")

class Downsample3D(nn.Module):

    def __init__(
        self,
        channels: int,
        out_channels: Optional[int] = None,
        kernel_size=2,
        bias=True,
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        stride = 2

        self.conv = nn.Conv3d(
                self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
            )

    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        assert hidden_states.shape[1] == self.channels

        assert hidden_states.shape[1] == self.channels

        hidden_states = self.conv(hidden_states)

        return hidden_states

class Upsample3D(nn.Module):

    def __init__(
        self,
        channels: int,
        use_conv: bool = False,
        use_conv_transpose: bool = True,
        out_channels: Optional[int] = None,
        name: str = "conv",
        kernel_size: Optional[int] = None,
        padding=1,
        bias=True,
        interpolate=False,
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name
        self.interpolate = interpolate

        conv = None
        if use_conv_transpose:
            conv = nn.ConvTranspose3d(
                channels, self.out_channels, kernel_size=2, stride=2, padding=0, bias=bias
            )
        elif use_conv:
            if kernel_size is None:
                kernel_size = 3
            conv = nn.Conv3d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)

        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv

    def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None) -> torch.Tensor:

        assert hidden_states.shape[1] == self.channels


        if self.use_conv_transpose:
            return self.conv(hidden_states)
    
        if hidden_states.shape[0] >= 64 or hidden_states.shape[-1] >= 64:
            hidden_states = hidden_states.contiguous()

        if self.interpolate:
            if output_size is None:
                hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
            else:
                hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")

        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states)
            else:
                hidden_states = self.Conv2d_0(hidden_states)

        return hidden_states
    
class ResnetBlock3D(nn.Module):

    def __init__(
        self,
        *,
        in_channels: int,
        out_channels: Optional[int] = None,
        conv_shortcut: bool = False,
        dropout: float = 0.0,
        groups: int = 32,
        groups_out: Optional[int] = None,
        eps: float = 1e-6,
        non_linearity: str = "swish",
        output_scale_factor: float = 1.0,
        use_in_shortcut: Optional[bool] = None,
        up: bool = False,
        down: bool = False,
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
    ):
        super().__init__()

        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)

        self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)


        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        conv_2d_out_channels = conv_2d_out_channels or out_channels
        self.conv2 = nn.Conv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)

        self.nonlinearity = get_activation(non_linearity)

        self.upsample = self.downsample = None
        if self.up:
            self.upsample = Upsample3D(in_channels, use_conv=False)
        elif self.down:
            self.downsample = Downsample3D(in_channels)

        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = nn.Conv3d(
                in_channels,
                conv_2d_out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=conv_shortcut_bias,
            )

    def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:

        hidden_states = input_tensor
        dtype = hidden_states.dtype
        hidden_states = self.norm1(hidden_states.float()).to(dtype)
        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)

        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states.float()).to(dtype)

        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor

class DownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample3D(
                        out_channels,
                        out_channels=out_channels
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states
    
class UpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock3D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                )
            )
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        upsample_size: Optional[int] = None,
    ) -> torch.Tensor:
        for resnet in self.resnets:
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]


            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
            hidden_states = resnet(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states

    
class UNetMidBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        dropout: float = 0.0,
        num_layers: int = 2,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        output_scale_factor: float = 1.0,
        use_linear_projection: bool = True,
    ):
        super().__init__()

        self.has_cross_attention = True
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        resnets = [
            ResnetBlock3D(
                in_channels=in_channels,
                out_channels=in_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
            )
        ]

        for _ in range(num_layers):
            resnets.append(
                ResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                )
            )

        self.resnets = nn.ModuleList(resnets)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        return hidden_states
    
def create_custom_forward(module, return_dict=None):
    def custom_forward(*inputs):
        if return_dict is not None:
            return module(*inputs, return_dict=return_dict)
        else:
            return module(*inputs)

    return custom_forward
                
class UNet3DModel(nn.Module):

    def __init__(
        self,
        in_channels: int = 4,
        out_channels: int = 4,
        use_conv_out: bool=True,
        down_block_types: Tuple[str, ...] = (
            "DownBlock3D",
            "DownBlock3D",
            "DownBlock3D",
            "DownBlock3D",
        ),
        up_block_types: Tuple[str, ...] = (
            "UpBlock3D",
            "UpBlock3D",
            "UpBlock3D",
            "UpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (4, 16, 64,256),
        layers_per_block: int = 4,
        layers_mid_block: int=4,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 4,
        norm_eps: float = 1e-5,
        use_checkpoint: bool = True,
    ):
        super().__init__()

        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        conv_in_kernel = 3
        conv_out_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv3d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                downsample_padding=downsample_padding,
            )
            self.down_blocks.append(down_block)

        self.mid_block = UNetMidBlock3D(
            in_channels=block_out_channels[-1],
            num_layers=layers_mid_block,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_groups=norm_num_groups,
        )

        self.num_upsamplers = 0

        reversed_block_out_channels = list(reversed(block_out_channels))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
            self.conv_act = get_activation("silu")
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        if use_conv_out:
            self.conv_out = nn.Conv3d(
                block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
            )
        else:
            self.conv_out = None

        self.use_checkpoint = use_checkpoint

    def forward(
        self,
        sample: torch.Tensor,
    ) :
        
        default_overall_up_factor = 2**self.num_upsamplers

        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            forward_upsample_size = True

        sample = self.conv_in(sample)

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if self.use_checkpoint:
                sample, res_samples = torch.utils.checkpoint.checkpoint(downsample_block, sample, use_reentrant=False)
            else:                                            
                sample, res_samples = downsample_block(hidden_states=sample)

            down_block_res_samples += res_samples

        if self.mid_block is not None:
            if self.use_checkpoint:
                sample = torch.utils.checkpoint.checkpoint(self.mid_block, sample, use_reentrant=False)
            else:                                            
                sample = self.mid_block(sample)

        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

           
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]
            if self.use_checkpoint:
                sample = torch.utils.checkpoint.checkpoint(upsample_block, (sample, res_samples, upsample_size), use_reentrant=False)
            else:
                sample = upsample_block(
                        hidden_states=sample,
                        res_hidden_states_tuple=res_samples,
                        upsample_size=upsample_size,
                    )
 
        if self.conv_norm_out:
            dtype = sample.dtype
            sample = self.conv_norm_out(sample.float()).to(dtype)
            sample = self.conv_act(sample)
        if self.conv_out!=None:
            sample = self.conv_out(sample)

            return F.tanh(sample)*2
        else:
            return sample