File size: 14,209 Bytes
bcb05d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import torch
import numpy as np
from typing import Any
from PIL import Image
from tqdm import tqdm
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from typing import Union, List, Optional
from direct3d_s2.modules import sparse as sp
from direct3d_s2.utils import (
    instantiate_from_config, 
    preprocess_image, 
    sort_block, 
    extract_tokens_and_coords,
    normalize_mesh,
    mesh2index,
)


class Direct3DS2Pipeline(object):

    def __init__(self, 
                 dense_vae, 
                 dense_dit,
                 sparse_vae_512,
                 sparse_dit_512,
                 sparse_vae_1024,
                 sparse_dit_1024,
                 refiner,
                 dense_image_encoder,
                 sparse_image_encoder,
                 dense_scheduler,
                 sparse_scheduler_512,
                 sparse_scheduler_1024,
                 dtype=torch.float16,
        ):
        self.dense_vae = dense_vae
        self.dense_dit = dense_dit
        self.sparse_vae_512 = sparse_vae_512
        self.sparse_dit_512 = sparse_dit_512
        self.sparse_vae_1024 = sparse_vae_1024
        self.sparse_dit_1024 = sparse_dit_1024
        self.refiner = refiner
        self.dense_image_encoder = dense_image_encoder
        self.sparse_image_encoder = sparse_image_encoder
        self.dense_scheduler = dense_scheduler
        self.sparse_scheduler_512 = sparse_scheduler_512
        self.sparse_scheduler_1024 = sparse_scheduler_1024
        self.dtype = dtype
    
    def to(self, device):
        self.device = torch.device(device)
        self.dense_vae.to(device)
        self.dense_dit.to(device)
        self.sparse_vae_512.to(device)
        self.sparse_dit_512.to(device)
        self.sparse_vae_1024.to(device)
        self.sparse_dit_1024.to(device)
        self.refiner.to(device)
        self.dense_image_encoder.to(device)
        self.sparse_image_encoder.to(device)

    @classmethod
    def from_pretrained(cls, pipeline_path, subfolder="direct3d-s2-v-1-1"):
        
        if os.path.isdir(pipeline_path):
            config_path = os.path.join(pipeline_path, 'config.yaml')
            model_dense_path = os.path.join(pipeline_path, 'model_dense.ckpt')
            model_sparse_512_path = os.path.join(pipeline_path, 'model_sparse_512.ckpt')
            model_sparse_1024_path = os.path.join(pipeline_path, 'model_sparse_1024.ckpt')
            model_refiner_path = os.path.join(pipeline_path, 'model_refiner.ckpt')
        else:
            config_path = hf_hub_download(
                repo_id=pipeline_path, 
                subfolder=subfolder, 
                filename="config.yaml", 
                repo_type="model"
            )
            model_dense_path = hf_hub_download(
                repo_id=pipeline_path, 
                subfolder=subfolder,
                filename="model_dense.ckpt", 
                repo_type="model"
            )
            model_sparse_512_path = hf_hub_download(
                repo_id=pipeline_path, 
                subfolder=subfolder,
                filename="model_sparse_512.ckpt", 
                repo_type="model"
            )
            model_sparse_1024_path = hf_hub_download(
                repo_id=pipeline_path, 
                subfolder=subfolder,
                filename="model_sparse_1024.ckpt", 
                repo_type="model"
            )
            model_refiner_path = hf_hub_download(
                repo_id=pipeline_path, 
                subfolder=subfolder,
                filename="model_refiner.ckpt", 
                repo_type="model"
            )

        cfg = OmegaConf.load(config_path)

        state_dict_dense = torch.load(model_dense_path, map_location='cpu', weights_only=True)
        dense_vae = instantiate_from_config(cfg.dense_vae)
        dense_vae.load_state_dict(state_dict_dense["vae"], strict=True)
        dense_vae.eval()
        dense_dit = instantiate_from_config(cfg.dense_dit)
        dense_dit.load_state_dict(state_dict_dense["dit"], strict=True)
        dense_dit.eval()

        state_dict_sparse_512 = torch.load(model_sparse_512_path, map_location='cpu', weights_only=True)
        sparse_vae_512 = instantiate_from_config(cfg.sparse_vae_512)
        sparse_vae_512.load_state_dict(state_dict_sparse_512["vae"], strict=True)
        sparse_vae_512.eval()
        sparse_dit_512 = instantiate_from_config(cfg.sparse_dit_512)
        sparse_dit_512.load_state_dict(state_dict_sparse_512["dit"], strict=True)
        sparse_dit_512.eval()

        state_dict_sparse_1024 = torch.load(model_sparse_1024_path, map_location='cpu', weights_only=True)
        sparse_vae_1024 = instantiate_from_config(cfg.sparse_vae_1024)
        sparse_vae_1024.load_state_dict(state_dict_sparse_1024["vae"], strict=True)
        sparse_vae_1024.eval()
        sparse_dit_1024 = instantiate_from_config(cfg.sparse_dit_1024)
        sparse_dit_1024.load_state_dict(state_dict_sparse_1024["dit"], strict=True)
        sparse_dit_1024.eval()

        state_dict_refiner = torch.load(model_refiner_path, map_location='cpu', weights_only=True)
        refiner = instantiate_from_config(cfg.refiner)
        refiner.load_state_dict(state_dict_refiner["refiner"], strict=True)
        refiner.eval()

        dense_image_encoder = instantiate_from_config(cfg.dense_image_encoder)
        sparse_image_encoder = instantiate_from_config(cfg.sparse_image_encoder)

        dense_scheduler = instantiate_from_config(cfg.dense_scheduler)
        sparse_scheduler_512 = instantiate_from_config(cfg.sparse_scheduler_512)
        sparse_scheduler_1024 = instantiate_from_config(cfg.sparse_scheduler_1024)

        return cls(
            dense_vae=dense_vae,
            dense_dit=dense_dit,
            sparse_vae_512=sparse_vae_512,
            sparse_dit_512=sparse_dit_512,
            sparse_vae_1024=sparse_vae_1024,
            sparse_dit_1024=sparse_dit_1024,
            dense_image_encoder=dense_image_encoder,
            sparse_image_encoder=sparse_image_encoder,
            dense_scheduler=dense_scheduler,
            sparse_scheduler_512=sparse_scheduler_512,
            sparse_scheduler_1024=sparse_scheduler_1024,
            refiner=refiner,
        )

    def preprocess(self, image):
        if image.mode == 'RGBA':
            image = np.array(image)
        else:
            if getattr(self, 'birefnet_model', None) is None:
                from direct3d_s2.utils import BiRefNet
                self.birefnet_model = BiRefNet(self.device)
            image = self.birefnet_model.run(image)
        image = preprocess_image(image)
        return image

    def prepare_image(self, image: Union[str, List[str], Image.Image, List[Image.Image]]):
        if not isinstance(image, list):
            image = [image]
        if isinstance(image[0], str):
            image = [Image.open(img) for img in image]
        image = [self.preprocess(img) for img in image]
        image = torch.stack([img for img in image]).to(self.device)
        return image
    
    def encode_image(self, image: torch.Tensor, conditioner: Any, 
                     do_classifier_free_guidance: bool = True, use_mask: bool = False):
        if use_mask:
            cond = conditioner(image[:, :3], image[:, 3:])
        else:
            cond = conditioner(image[:, :3])

        if isinstance(cond, tuple):
            cond, cond_mask = cond
            cond, cond_coords = extract_tokens_and_coords(cond, cond_mask)
        else:
            cond_mask, cond_coords = None, None

        if do_classifier_free_guidance:
            uncond = torch.zeros_like(cond)
        else:
            uncond = None
        
        if cond_coords is not None:
            cond = sp.SparseTensor(cond, cond_coords.int())
            if uncond is not None:
                uncond = sp.SparseTensor(uncond, cond_coords.int())

        return cond, uncond

    def inference(
            self,
            image,
            vae,
            dit,
            conditioner,
            scheduler,
            num_inference_steps: int = 30, 
            guidance_scale: int = 7.0, 
            generator: Optional[torch.Generator] = None,
            latent_index: torch.Tensor = None,
            mode: str = 'dense', # 'dense', 'sparse512' or 'sparse1024
            remove_interior: bool = False,
            mc_threshold: float = 0.02):
        
        do_classifier_free_guidance = guidance_scale > 0
        if mode == 'dense':
            sparse_conditions = False
        else:
            sparse_conditions = dit.sparse_conditions
        cond, uncond = self.encode_image(image, conditioner, 
                                         do_classifier_free_guidance, sparse_conditions)
        batch_size = cond.shape[0]

        if mode == 'dense':
            latent_shape = (batch_size, *dit.latent_shape)
        else:
            latent_shape = (len(latent_index), dit.out_channels)
        latents = torch.randn(latent_shape, dtype=self.dtype, device=self.device, generator=generator)

        scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = scheduler.timesteps

        extra_step_kwargs = {
            "generator": generator
        }

        for i, t in enumerate(tqdm(timesteps, desc=f"{mode} Sampling:")):
            latent_model_input = latents
            timestep_tensor = torch.tensor([t], dtype=latent_model_input.dtype, device=self.device)

            if mode == 'dense':
                x_input = latent_model_input
            elif mode in ['sparse512', 'sparse1024']:
                x_input = sp.SparseTensor(latent_model_input, latent_index.int())

            diffusion_inputs = {
                "x": x_input,
                "t": timestep_tensor,
                "cond": cond,
            }

            noise_pred_cond = dit(**diffusion_inputs)
            if mode != 'dense':
                noise_pred_cond = noise_pred_cond.feats

            if do_classifier_free_guidance:
                diffusion_inputs["cond"] = uncond
                noise_pred_uncond = dit(**diffusion_inputs)
                if mode != 'dense':
                    noise_pred_uncond = noise_pred_uncond.feats
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
            else:
                noise_pred = noise_pred_cond
            
            latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
        
        latents = 1. / vae.latents_scale * latents + vae.latents_shift
        
        if mode != 'dense':
            latents = sp.SparseTensor(latents, latent_index.int())

        decoder_inputs = {
            "latents": latents,
            "mc_threshold": mc_threshold,
        }
        if mode == 'dense':
            decoder_inputs['return_index'] = True
        elif remove_interior:
            decoder_inputs['return_feat'] = True
        if mode == 'sparse1024':
            decoder_inputs['voxel_resolution'] = 1024

        outputs = vae.decode_mesh(**decoder_inputs)

        if remove_interior:
            del latents, noise_pred, noise_pred_cond, noise_pred_uncond, x_input, cond, uncond
            torch.cuda.empty_cache()
            outputs = self.refiner.run(*outputs, mc_threshold=mc_threshold*2.0)

        return outputs
    
    @torch.no_grad()
    def __call__(
        self,
        image: Union[str, List[str], Image.Image, List[Image.Image]] = None,
        sdf_resolution: int = 1024,
        dense_sampler_params: dict = {'num_inference_steps': 50, 'guidance_scale': 7.0},
        sparse_512_sampler_params: dict = {'num_inference_steps': 30, 'guidance_scale': 7.0},
        sparse_1024_sampler_params: dict = {'num_inference_steps': 15, 'guidance_scale': 7.0},
        generator: Optional[torch.Generator] = None,
        remesh: bool = False,
        simplify_ratio: float = 0.95,
        mc_threshold: float = 0.2):

        image = self.prepare_image(image)
        
        latent_index = self.inference(image, self.dense_vae, self.dense_dit, self.dense_image_encoder,
                                    self.dense_scheduler, generator=generator, mode='dense', mc_threshold=0.1, **dense_sampler_params)[0]
        
        latent_index = sort_block(latent_index, self.sparse_dit_512.selection_block_size)

        torch.cuda.empty_cache()

        if sdf_resolution == 512:
            remove_interior = False
        else:
            remove_interior = True

        mesh = self.inference(image, self.sparse_vae_512, self.sparse_dit_512, 
                                self.sparse_image_encoder, self.sparse_scheduler_512, 
                                generator=generator, mode='sparse512', 
                                mc_threshold=mc_threshold, latent_index=latent_index, 
                                remove_interior=remove_interior, **sparse_512_sampler_params)[0]

        if sdf_resolution == 1024:
            del latent_index
            torch.cuda.empty_cache()
            mesh = normalize_mesh(mesh)
            latent_index = mesh2index(mesh, size=1024, factor=8)
            latent_index = sort_block(latent_index, self.sparse_dit_1024.selection_block_size)
            print(f"number of latent tokens: {len(latent_index)}")

            mesh = self.inference(image, self.sparse_vae_1024, self.sparse_dit_1024, 
                                self.sparse_image_encoder, self.sparse_scheduler_1024, 
                                generator=generator, mode='sparse1024', 
                                mc_threshold=mc_threshold, latent_index=latent_index, 
                                **sparse_1024_sampler_params)[0]
            
        if remesh:
            import trimesh
            from direct3d_s2.utils import postprocess_mesh
            filled_mesh = postprocess_mesh(
                vertices=mesh.vertices,
                faces=mesh.faces,
                simplify=True,
                simplify_ratio=simplify_ratio,
                verbose=True,
            )
            mesh = trimesh.Trimesh(filled_mesh[0], filled_mesh[1])

        outputs = {"mesh": mesh}

        return outputs