Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,879 Bytes
bcb05d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from pymeshfix import _meshfix
import igraph
import pyvista as pv
PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
def radical_inverse(base, n):
val = 0
inv_base = 1.0 / base
inv_base_n = inv_base
while n > 0:
digit = n % base
val += digit * inv_base_n
n //= base
inv_base_n *= inv_base
return val
def halton_sequence(dim, n):
return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]
def hammersley_sequence(dim, n, num_samples):
return [n / num_samples] + halton_sequence(dim - 1, n)
def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False):
u, v = hammersley_sequence(2, n, num_samples)
u += offset[0] / num_samples
v += offset[1]
if remap:
u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3
theta = np.arccos(1 - 2 * u) - np.pi / 2
phi = v * 2 * np.pi
return [phi, theta]
@torch.no_grad()
def _fill_holes(
verts,
faces,
max_hole_size=0.04,
max_hole_nbe=32,
resolution=128,
num_views=500,
debug=False,
verbose=False
):
"""
Rasterize a mesh from multiple views and remove invisible faces.
Also includes postprocessing to:
1. Remove connected components that are have low visibility.
2. Mincut to remove faces at the inner side of the mesh connected to the outer side with a small hole.
Args:
verts (torch.Tensor): Vertices of the mesh. Shape (V, 3).
faces (torch.Tensor): Faces of the mesh. Shape (F, 3).
max_hole_size (float): Maximum area of a hole to fill.
resolution (int): Resolution of the rasterization.
num_views (int): Number of views to rasterize the mesh.
verbose (bool): Whether to print progress.
"""
# Construct cameras
yaws = []
pitchs = []
for i in range(num_views):
y, p = sphere_hammersley_sequence(i, num_views)
yaws.append(y)
pitchs.append(p)
yaws = torch.tensor(yaws).cuda()
pitchs = torch.tensor(pitchs).cuda()
radius = 2.0
fov = torch.deg2rad(torch.tensor(40)).cuda()
projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)
views = []
for (yaw, pitch) in zip(yaws, pitchs):
orig = torch.tensor([
torch.sin(yaw) * torch.cos(pitch),
torch.cos(yaw) * torch.cos(pitch),
torch.sin(pitch),
]).cuda().float() * radius
view = utils3d.torch.view_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
views.append(view)
views = torch.stack(views, dim=0)
# Rasterize
visblity = torch.zeros(faces.shape[0], dtype=torch.int32, device=verts.device)
rastctx = utils3d.torch.RastContext(backend='cuda')
for i in tqdm(range(views.shape[0]), total=views.shape[0], disable=not verbose, desc='Rasterizing'):
view = views[i]
buffers = utils3d.torch.rasterize_triangle_faces(
rastctx, verts[None].float(), faces, resolution, resolution, view=view, projection=projection
)
face_id = buffers['face_id'][0][buffers['mask'][0] > 0.95] - 1
face_id = torch.unique(face_id).long()
visblity[face_id] += 1
visblity = visblity.float() / num_views
# Mincut
## construct outer faces
edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
connected_components = utils3d.torch.compute_connected_components(faces, edges, face2edge)
outer_face_indices = torch.zeros(faces.shape[0], dtype=torch.bool, device=faces.device)
for i in range(len(connected_components)):
outer_face_indices[connected_components[i]] = visblity[connected_components[i]] > min(max(visblity[connected_components[i]].quantile(0.75).item(), 0.25), 0.5)
outer_face_indices = outer_face_indices.nonzero().reshape(-1)
## construct inner faces
inner_face_indices = torch.nonzero(visblity == 0).reshape(-1)
if verbose:
tqdm.write(f'Found {inner_face_indices.shape[0]} invisible faces')
if inner_face_indices.shape[0] == 0:
return verts, faces
## Construct dual graph (faces as nodes, edges as edges)
dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(face2edge)
dual_edge2edge = edges[dual_edge2edge]
dual_edges_weights = torch.norm(verts[dual_edge2edge[:, 0]] - verts[dual_edge2edge[:, 1]], dim=1)
if verbose:
tqdm.write(f'Dual graph: {dual_edges.shape[0]} edges')
## solve mincut problem
### construct main graph
g = igraph.Graph()
g.add_vertices(faces.shape[0])
g.add_edges(dual_edges.cpu().numpy())
g.es['weight'] = dual_edges_weights.cpu().numpy()
### source and target
g.add_vertex('s')
g.add_vertex('t')
### connect invisible faces to source
g.add_edges([(f, 's') for f in inner_face_indices], attributes={'weight': torch.ones(inner_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
### connect outer faces to target
g.add_edges([(f, 't') for f in outer_face_indices], attributes={'weight': torch.ones(outer_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
### solve mincut
cut = g.mincut('s', 't', (np.array(g.es['weight']) * 1000).tolist())
remove_face_indices = torch.tensor([v for v in cut.partition[0] if v < faces.shape[0]], dtype=torch.long, device=faces.device)
if verbose:
tqdm.write(f'Mincut solved, start checking the cut')
### check if the cut is valid with each connected component
to_remove_cc = utils3d.torch.compute_connected_components(faces[remove_face_indices])
if debug:
tqdm.write(f'Number of connected components of the cut: {len(to_remove_cc)}')
valid_remove_cc = []
cutting_edges = []
for cc in to_remove_cc:
#### check if the connected component has low visibility
visblity_median = visblity[remove_face_indices[cc]].median()
if debug:
tqdm.write(f'visblity_median: {visblity_median}')
if visblity_median > 0.25:
continue
#### check if the cuting loop is small enough
cc_edge_indices, cc_edges_degree = torch.unique(face2edge[remove_face_indices[cc]], return_counts=True)
cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
cc_new_boundary_edge_indices = cc_boundary_edge_indices[~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)]
if len(cc_new_boundary_edge_indices) > 0:
cc_new_boundary_edge_cc = utils3d.torch.compute_edge_connected_components(edges[cc_new_boundary_edge_indices])
cc_new_boundary_edges_cc_center = [verts[edges[cc_new_boundary_edge_indices[edge_cc]]].mean(dim=1).mean(dim=0) for edge_cc in cc_new_boundary_edge_cc]
cc_new_boundary_edges_cc_area = []
for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
_e1 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]] - cc_new_boundary_edges_cc_center[i]
_e2 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]] - cc_new_boundary_edges_cc_center[i]
cc_new_boundary_edges_cc_area.append(torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() * 0.5)
if debug:
cutting_edges.append(cc_new_boundary_edge_indices)
tqdm.write(f'Area of the cutting loop: {cc_new_boundary_edges_cc_area}')
if any([l > max_hole_size for l in cc_new_boundary_edges_cc_area]):
continue
valid_remove_cc.append(cc)
if debug:
face_v = verts[faces].mean(dim=1).cpu().numpy()
vis_dual_edges = dual_edges.cpu().numpy()
vis_colors = np.zeros((faces.shape[0], 3), dtype=np.uint8)
vis_colors[inner_face_indices.cpu().numpy()] = [0, 0, 255]
vis_colors[outer_face_indices.cpu().numpy()] = [0, 255, 0]
vis_colors[remove_face_indices.cpu().numpy()] = [255, 0, 255]
if len(valid_remove_cc) > 0:
vis_colors[remove_face_indices[torch.cat(valid_remove_cc)].cpu().numpy()] = [255, 0, 0]
utils3d.io.write_ply('dbg_dual.ply', face_v, edges=vis_dual_edges, vertex_colors=vis_colors)
vis_verts = verts.cpu().numpy()
vis_edges = edges[torch.cat(cutting_edges)].cpu().numpy()
utils3d.io.write_ply('dbg_cut.ply', vis_verts, edges=vis_edges)
if len(valid_remove_cc) > 0:
remove_face_indices = remove_face_indices[torch.cat(valid_remove_cc)]
mask = torch.ones(faces.shape[0], dtype=torch.bool, device=faces.device)
mask[remove_face_indices] = 0
faces = faces[mask]
faces, verts = utils3d.torch.remove_unreferenced_vertices(faces, verts)
if verbose:
tqdm.write(f'Removed {(~mask).sum()} faces by mincut')
else:
if verbose:
tqdm.write(f'Removed 0 faces by mincut')
mesh = _meshfix.PyTMesh()
mesh.load_array(verts.cpu().numpy(), faces.cpu().numpy())
mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)
verts, faces = mesh.return_arrays()
verts, faces = torch.tensor(verts, device='cuda', dtype=torch.float32), torch.tensor(faces, device='cuda', dtype=torch.int32)
return verts, faces
def postprocess_mesh(
vertices: np.array,
faces: np.array,
simplify: bool = False,
simplify_ratio: float = 0.9,
fill_holes: bool = False,
fill_holes_max_hole_size: float = 0.04,
fill_holes_max_hole_nbe: int = 32,
fill_holes_resolution: int = 1024,
fill_holes_num_views: int = 1000,
debug: bool = False,
verbose: bool = False,
):
"""
Postprocess a mesh by simplifying, removing invisible faces, and removing isolated pieces.
Args:
vertices (np.array): Vertices of the mesh. Shape (V, 3).
faces (np.array): Faces of the mesh. Shape (F, 3).
simplify (bool): Whether to simplify the mesh, using quadric edge collapse.
simplify_ratio (float): Ratio of faces to keep after simplification.
fill_holes (bool): Whether to fill holes in the mesh.
fill_holes_max_hole_size (float): Maximum area of a hole to fill.
fill_holes_max_hole_nbe (int): Maximum number of boundary edges of a hole to fill.
fill_holes_resolution (int): Resolution of the rasterization.
fill_holes_num_views (int): Number of views to rasterize the mesh.
verbose (bool): Whether to print progress.
"""
if verbose:
tqdm.write(f'Before postprocess: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
# Simplify
if simplify and simplify_ratio > 0:
mesh = pv.PolyData(vertices, np.concatenate([np.full((faces.shape[0], 1), 3), faces], axis=1))
mesh = mesh.decimate(simplify_ratio, progress_bar=verbose)
vertices, faces = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:]
if verbose:
tqdm.write(f'After decimate: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
# Remove invisible faces
if fill_holes:
vertices, faces = torch.tensor(vertices).cuda(), torch.tensor(faces.astype(np.int32)).cuda()
vertices, faces = _fill_holes(
vertices, faces,
max_hole_size=fill_holes_max_hole_size,
max_hole_nbe=fill_holes_max_hole_nbe,
resolution=fill_holes_resolution,
num_views=fill_holes_num_views,
debug=debug,
verbose=verbose,
)
vertices, faces = vertices.cpu().numpy(), faces.cpu().numpy()
if verbose:
tqdm.write(f'After remove invisible faces: {vertices.shape[0]} vertices, {faces.shape[0]} faces')
return vertices, faces |