File size: 11,879 Bytes
bcb05d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from pymeshfix import _meshfix
import igraph
import pyvista as pv

PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]

def radical_inverse(base, n):
    val = 0
    inv_base = 1.0 / base
    inv_base_n = inv_base
    while n > 0:
        digit = n % base
        val += digit * inv_base_n
        n //= base
        inv_base_n *= inv_base
    return val

def halton_sequence(dim, n):
    return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]

def hammersley_sequence(dim, n, num_samples):
    return [n / num_samples] + halton_sequence(dim - 1, n)

def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False):
    u, v = hammersley_sequence(2, n, num_samples)
    u += offset[0] / num_samples
    v += offset[1]
    if remap:
        u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3
    theta = np.arccos(1 - 2 * u) - np.pi / 2
    phi = v * 2 * np.pi
    return [phi, theta]

@torch.no_grad()
def _fill_holes(
    verts,
    faces,
    max_hole_size=0.04,
    max_hole_nbe=32,
    resolution=128,
    num_views=500,
    debug=False,
    verbose=False
):
    """
    Rasterize a mesh from multiple views and remove invisible faces.
    Also includes postprocessing to:
        1. Remove connected components that are have low visibility.
        2. Mincut to remove faces at the inner side of the mesh connected to the outer side with a small hole.

    Args:
        verts (torch.Tensor): Vertices of the mesh. Shape (V, 3).
        faces (torch.Tensor): Faces of the mesh. Shape (F, 3).
        max_hole_size (float): Maximum area of a hole to fill.
        resolution (int): Resolution of the rasterization.
        num_views (int): Number of views to rasterize the mesh.
        verbose (bool): Whether to print progress.
    """
    # Construct cameras
    yaws = []
    pitchs = []
    for i in range(num_views):
        y, p = sphere_hammersley_sequence(i, num_views)
        yaws.append(y)
        pitchs.append(p)
    yaws = torch.tensor(yaws).cuda()
    pitchs = torch.tensor(pitchs).cuda()
    radius = 2.0
    fov = torch.deg2rad(torch.tensor(40)).cuda()
    projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)
    views = []
    for (yaw, pitch) in zip(yaws, pitchs):
        orig = torch.tensor([
            torch.sin(yaw) * torch.cos(pitch),
            torch.cos(yaw) * torch.cos(pitch),
            torch.sin(pitch),
        ]).cuda().float() * radius
        view = utils3d.torch.view_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
        views.append(view)
    views = torch.stack(views, dim=0)

    # Rasterize
    visblity = torch.zeros(faces.shape[0], dtype=torch.int32, device=verts.device)
    rastctx = utils3d.torch.RastContext(backend='cuda')
    for i in tqdm(range(views.shape[0]), total=views.shape[0], disable=not verbose, desc='Rasterizing'):
        view = views[i]
        buffers = utils3d.torch.rasterize_triangle_faces(
            rastctx, verts[None].float(), faces, resolution, resolution, view=view, projection=projection
        )
        face_id = buffers['face_id'][0][buffers['mask'][0] > 0.95] - 1
        face_id = torch.unique(face_id).long()
        visblity[face_id] += 1
    visblity = visblity.float() / num_views
    
    # Mincut
    ## construct outer faces
    edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
    boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
    connected_components = utils3d.torch.compute_connected_components(faces, edges, face2edge)
    outer_face_indices = torch.zeros(faces.shape[0], dtype=torch.bool, device=faces.device)
    for i in range(len(connected_components)):
        outer_face_indices[connected_components[i]] = visblity[connected_components[i]] > min(max(visblity[connected_components[i]].quantile(0.75).item(), 0.25), 0.5)
    outer_face_indices = outer_face_indices.nonzero().reshape(-1)
    
    ## construct inner faces
    inner_face_indices = torch.nonzero(visblity == 0).reshape(-1)
    if verbose:
        tqdm.write(f'Found {inner_face_indices.shape[0]} invisible faces')
    if inner_face_indices.shape[0] == 0:
        return verts, faces
    
    ## Construct dual graph (faces as nodes, edges as edges)
    dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(face2edge)
    dual_edge2edge = edges[dual_edge2edge]
    dual_edges_weights = torch.norm(verts[dual_edge2edge[:, 0]] - verts[dual_edge2edge[:, 1]], dim=1)
    if verbose:
        tqdm.write(f'Dual graph: {dual_edges.shape[0]} edges')

    ## solve mincut problem
    ### construct main graph
    g = igraph.Graph()
    g.add_vertices(faces.shape[0])
    g.add_edges(dual_edges.cpu().numpy())
    g.es['weight'] = dual_edges_weights.cpu().numpy()
    
    ### source and target
    g.add_vertex('s')
    g.add_vertex('t')
    
    ### connect invisible faces to source
    g.add_edges([(f, 's') for f in inner_face_indices], attributes={'weight': torch.ones(inner_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
    
    ### connect outer faces to target
    g.add_edges([(f, 't') for f in outer_face_indices], attributes={'weight': torch.ones(outer_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
                
    ### solve mincut
    cut = g.mincut('s', 't', (np.array(g.es['weight']) * 1000).tolist())
    remove_face_indices = torch.tensor([v for v in cut.partition[0] if v < faces.shape[0]], dtype=torch.long, device=faces.device)
    if verbose:
        tqdm.write(f'Mincut solved, start checking the cut')
    
    ### check if the cut is valid with each connected component
    to_remove_cc = utils3d.torch.compute_connected_components(faces[remove_face_indices])
    if debug:
        tqdm.write(f'Number of connected components of the cut: {len(to_remove_cc)}')
    valid_remove_cc = []
    cutting_edges = []
    for cc in to_remove_cc:
        #### check if the connected component has low visibility
        visblity_median = visblity[remove_face_indices[cc]].median()
        if debug:
            tqdm.write(f'visblity_median: {visblity_median}')
        if visblity_median > 0.25:
            continue
        
        #### check if the cuting loop is small enough
        cc_edge_indices, cc_edges_degree = torch.unique(face2edge[remove_face_indices[cc]], return_counts=True)
        cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
        cc_new_boundary_edge_indices = cc_boundary_edge_indices[~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)]
        if len(cc_new_boundary_edge_indices) > 0:
            cc_new_boundary_edge_cc = utils3d.torch.compute_edge_connected_components(edges[cc_new_boundary_edge_indices])
            cc_new_boundary_edges_cc_center = [verts[edges[cc_new_boundary_edge_indices[edge_cc]]].mean(dim=1).mean(dim=0) for edge_cc in cc_new_boundary_edge_cc]
            cc_new_boundary_edges_cc_area = []
            for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
                _e1 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]] - cc_new_boundary_edges_cc_center[i]
                _e2 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]] - cc_new_boundary_edges_cc_center[i]
                cc_new_boundary_edges_cc_area.append(torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() * 0.5)
            if debug:
                cutting_edges.append(cc_new_boundary_edge_indices)
                tqdm.write(f'Area of the cutting loop: {cc_new_boundary_edges_cc_area}')
            if any([l > max_hole_size for l in cc_new_boundary_edges_cc_area]):
                continue
            
        valid_remove_cc.append(cc)
        
    if debug:
        face_v = verts[faces].mean(dim=1).cpu().numpy()
        vis_dual_edges = dual_edges.cpu().numpy()
        vis_colors = np.zeros((faces.shape[0], 3), dtype=np.uint8)
        vis_colors[inner_face_indices.cpu().numpy()] = [0, 0, 255]
        vis_colors[outer_face_indices.cpu().numpy()] = [0, 255, 0]
        vis_colors[remove_face_indices.cpu().numpy()] = [255, 0, 255]
        if len(valid_remove_cc) > 0:
            vis_colors[remove_face_indices[torch.cat(valid_remove_cc)].cpu().numpy()] = [255, 0, 0]
        utils3d.io.write_ply('dbg_dual.ply', face_v, edges=vis_dual_edges, vertex_colors=vis_colors)
        
        vis_verts = verts.cpu().numpy()
        vis_edges = edges[torch.cat(cutting_edges)].cpu().numpy()
        utils3d.io.write_ply('dbg_cut.ply', vis_verts, edges=vis_edges)
        
    
    if len(valid_remove_cc) > 0:
        remove_face_indices = remove_face_indices[torch.cat(valid_remove_cc)]
        mask = torch.ones(faces.shape[0], dtype=torch.bool, device=faces.device)
        mask[remove_face_indices] = 0
        faces = faces[mask]
        faces, verts = utils3d.torch.remove_unreferenced_vertices(faces, verts)
        if verbose:
            tqdm.write(f'Removed {(~mask).sum()} faces by mincut')
    else:
        if verbose:
            tqdm.write(f'Removed 0 faces by mincut')
            
    mesh = _meshfix.PyTMesh()
    mesh.load_array(verts.cpu().numpy(), faces.cpu().numpy())
    mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)
    verts, faces = mesh.return_arrays()
    verts, faces = torch.tensor(verts, device='cuda', dtype=torch.float32), torch.tensor(faces, device='cuda', dtype=torch.int32)

    return verts, faces

def postprocess_mesh(
    vertices: np.array,
    faces: np.array,
    simplify: bool = False,
    simplify_ratio: float = 0.9,
    fill_holes: bool = False,
    fill_holes_max_hole_size: float = 0.04,
    fill_holes_max_hole_nbe: int = 32,
    fill_holes_resolution: int = 1024,
    fill_holes_num_views: int = 1000,
    debug: bool = False,
    verbose: bool = False,
):
    """
    Postprocess a mesh by simplifying, removing invisible faces, and removing isolated pieces.

    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
        simplify (bool): Whether to simplify the mesh, using quadric edge collapse.
        simplify_ratio (float): Ratio of faces to keep after simplification.
        fill_holes (bool): Whether to fill holes in the mesh.
        fill_holes_max_hole_size (float): Maximum area of a hole to fill.
        fill_holes_max_hole_nbe (int): Maximum number of boundary edges of a hole to fill.
        fill_holes_resolution (int): Resolution of the rasterization.
        fill_holes_num_views (int): Number of views to rasterize the mesh.
        verbose (bool): Whether to print progress.
    """

    if verbose:
        tqdm.write(f'Before postprocess: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    # Simplify
    if simplify and simplify_ratio > 0:
        mesh = pv.PolyData(vertices, np.concatenate([np.full((faces.shape[0], 1), 3), faces], axis=1))
        mesh = mesh.decimate(simplify_ratio, progress_bar=verbose)
        vertices, faces = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:]
        if verbose:
            tqdm.write(f'After decimate: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    # Remove invisible faces
    if fill_holes:
        vertices, faces = torch.tensor(vertices).cuda(), torch.tensor(faces.astype(np.int32)).cuda()
        vertices, faces = _fill_holes(
            vertices, faces,
            max_hole_size=fill_holes_max_hole_size,
            max_hole_nbe=fill_holes_max_hole_nbe,
            resolution=fill_holes_resolution,
            num_views=fill_holes_num_views,
            debug=debug,
            verbose=verbose,
        )
        vertices, faces = vertices.cpu().numpy(), faces.cpu().numpy()
        if verbose:
            tqdm.write(f'After remove invisible faces: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    return vertices, faces