Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from torchvision import transforms | |
import spaces | |
class BiRefNet(object): | |
def __init__(self, device): | |
from transformers import AutoModelForImageSegmentation | |
self.birefnet_model = AutoModelForImageSegmentation.from_pretrained( | |
'ZhengPeng7/BiRefNet', | |
trust_remote_code=True, | |
).to(device) | |
self.birefnet_model.eval() | |
self.device = device | |
def run(self, image): | |
image = image.convert('RGB') | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose([ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
input_images = transform_image(image).unsqueeze(0).to(self.device) | |
with torch.no_grad(): | |
preds = self.birefnet_model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image.size) | |
mask = np.array(mask) | |
image = np.concatenate([np.array(image), mask[..., None]], axis=-1) | |
return image |