File size: 12,645 Bytes
ff50632 b4d60f4 ff50632 b4d60f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import spaces # for ZeroGPU support
import gradio as gr
import pandas as pd
import numpy as np
import torch
import subprocess
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer
)
# βββ MODEL SETUP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL_NAME = "bytedance-research/ChatTS-14B"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
model.eval()
# βββ HELPER FUNCTIONS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_default_timeseries():
"""Create default time series with sudden increase"""
seq_len = 256
y = np.zeros(seq_len, dtype=np.float32)
y[100:] += 1
df = pd.DataFrame({"default_series": y})
return df
def process_csv_file(csv_file):
"""Process CSV file and return DataFrame with validation"""
if csv_file is None:
return None, "No file uploaded"
try:
df = pd.read_csv(csv_file.name)
# drop columns with empty names or all-NaNs
df.columns = [str(c).strip() for c in df.columns]
df = df.loc[:, [c for c in df.columns if c]]
df = df.dropna(axis=1, how="all")
print(f"File {csv_file.name} loaded. {df.columns=}")
if df.shape[1] == 0:
return None, "No valid time-series columns found."
if df.shape[1] > 15:
return None, f"Too many series ({df.shape[1]}). Max allowed = 15."
# Validate ALL columns as time series
ts_names, ts_list = [], []
for name in df.columns:
series = df[name]
# ensure float dtype
if not pd.api.types.is_float_dtype(series):
try:
series = pd.to_numeric(series, errors='coerce')
except:
return None, f"Series '{name}' cannot be converted to float type."
# trim trailing NaNs only
last_valid = series.last_valid_index()
if last_valid is None:
continue
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
length = trimmed.shape[0]
if length < 64 or length > 1024:
return None, f"Series '{name}' length {length} invalid. Must be 64 to 1024."
ts_names.append(name)
ts_list.append(trimmed)
if not ts_list:
return None, "All time series are empty after trimming NaNs."
print(f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}")
return df, f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}"
except Exception as e:
return None, f"Error processing file: {str(e)}"
def preview_csv(csv_file, use_default):
"""Preview uploaded CSV file immediately"""
if csv_file is None:
return gr.LinePlot(value=pd.DataFrame()), "Please upload a CSV file first", gr.Dropdown(), False
df, message = process_csv_file(csv_file)
if df is None:
return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown(), False
# Create dropdown choices
column_choices = list(df.columns)
# Create plot with first column as default
first_column = column_choices[0]
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=first_column,
title=f"Time Series: {first_column}"
)
# Update dropdown
dropdown = gr.Dropdown(
choices=column_choices,
value=first_column,
label="Select a Column to Visualize"
)
print("Successfully generated preview!")
return plot, message, dropdown, False # Set use_default to False when file is uploaded
def clear_csv():
"""Clear uploaded CSV file immediately"""
df, message = process_csv_file(None)
return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown()
def update_plot(csv_file, selected_column):
"""Update plot based on selected column"""
if csv_file is None or selected_column is None:
return gr.LinePlot(value=pd.DataFrame())
df, _ = process_csv_file(csv_file)
if df is None:
return gr.LinePlot(value=pd.DataFrame())
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[selected_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=selected_column,
title=f"Time Series: {selected_column}"
)
return plot
def initialize_interface():
"""Initialize interface with default time series"""
df = create_default_timeseries()
column_choices = list(df.columns)
first_column = column_choices[0]
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=first_column,
title=f"Time Series: {first_column}"
)
dropdown = gr.Dropdown(
choices=column_choices,
value=first_column,
label="Select a Column to Visualize"
)
message = "Using default time series with sudden increase at step 100"
return plot, message, dropdown, True # Set use_default to True on initialization
# βββ INFERENCE + VALIDATION ββββββββββββββββββββββββββββββββββββββββββββββββββββ
@spaces.GPU # dynamically allocate & release a ZeroGPU device on each call
def infer_chatts_stream(prompt: str, csv_file, use_default):
"""
Streaming version of ChatTS inference
"""
print("Start inferring!!!")
if not prompt.strip():
yield "Please enter a prompt"
return
# Use default if no file uploaded and use_default is True
if csv_file is None and use_default:
df = create_default_timeseries()
error_msg = None
else:
df, error_msg = process_csv_file(csv_file)
if df is None:
yield "Please upload a CSV file first or the file contains errors"
return
try:
# Prepare time series data - use ALL columns
ts_names, ts_list = [], []
for name in df.columns:
series = df[name]
last_valid = series.last_valid_index()
if last_valid is not None:
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
ts_names.append(name)
ts_list.append(trimmed)
if not ts_list:
yield "No valid time series data found. Please upload time series first."
return
# Clean prompt
clean_prompt = prompt.replace("<ts>", "").replace("<ts/>", "")
# Build prompt prefix
prefix = f"I have {len(ts_list)} time series:\n"
for name, arr in zip(ts_names, ts_list):
prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
full_prompt = f"<|im_start|>system\nYou are a helpful assistant. Your name is ChatTS. You can analyze time series data and provide insights. If user asks who you are, you should give your name and capabilities in the language of the prompt. If no time series are provided, you should say 'I cannot answer this question as you haven't provide the timeseries I need' in the language of the prompt. Always check if the user has provided at least one time series data before answering.<|im_end|><|im_start|>user\n{prefix}{clean_prompt}<|im_end|><|im_start|>assistant\n"
print(f"[debug] {full_prompt}. {len(ts_list)=}, {[len(item) for item in ts_list]=}")
# Encode inputs
inputs = processor(
text=[full_prompt],
timeseries=ts_list,
padding=True,
return_tensors="pt"
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
if inputs['timeseries'] is not None:
print(f"[debug] {inputs['timeseries'].shape=}")
# Generate with streaming
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
inputs.update({
"max_new_tokens": 512,
"streamer": streamer,
"temperature": 0.3
})
thread = Thread(
target=model.generate,
kwargs=inputs
)
thread.start()
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
except Exception as e:
yield f"Error during inference: {str(e)}"
# βββ GRADIO APP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(title="ChatTS Demo") as demo:
gr.Markdown("## ChatTS: Time Series Understanding and Reasoning")
gr.HTML("""<div style="display:flex;justify-content: center">
<a href="https://github.com/NetmanAIOps/ChatTS"><img alt="github" src="https://img.shields.io/badge/Code-GitHub-blue"></a>
<a href="https://huggingface.co/bytedance-research/ChatTS-14B"><img alt="github" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-FFD21E"></a>
<a href="https://arxiv.org/abs/2412.03104"><img alt="preprint" src="https://img.shields.io/static/v1?label=arXiv&message=2412.03104&color=B31B1B&logo=arXiv"></a>
</div>""")
gr.Markdown("Try ChatTS with the default time series, or upload a CSV file (Example: [ts_example.csv](https://github.com/NetManAIOps/ChatTS/blob/main/demo/ts_example.csv)) containing UTS/MTS where each column is a dimension (no index column). All columns will be used as input of ChatTS automatically.")
# State to track whether to use default time series
use_default_state = gr.State(value=True)
with gr.Row():
with gr.Column(scale=1):
upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
type="filepath"
)
prompt_input = gr.Textbox(
lines=6,
placeholder="Enter your question here...",
label="Analysis Prompt",
value="Please analyze all the given time series and provide insights about the local fluctuations in the time series in detail."
)
run_btn = gr.Button("Run ChatTS", variant="primary")
with gr.Column(scale=2):
series_selector = gr.Dropdown(
label="Select a Column to Visualize",
choices=[],
value=None
)
plot_out = gr.LinePlot(value=pd.DataFrame(), label="Time Series Visualization")
file_status = gr.Textbox(
label="File Status",
interactive=False,
lines=2
)
text_out = gr.Textbox(
lines=10,
label="ChatTS Analysis Results",
interactive=False
)
# Initialize interface with default data
demo.load(
fn=initialize_interface,
outputs=[plot_out, file_status, series_selector, use_default_state]
)
# Event handlers
upload.upload(
fn=preview_csv,
inputs=[upload, use_default_state],
outputs=[plot_out, file_status, series_selector, use_default_state]
)
upload.clear(
fn=clear_csv,
inputs=[],
outputs=[plot_out, file_status, series_selector]
)
series_selector.change(
fn=update_plot,
inputs=[upload, series_selector],
outputs=[plot_out]
)
run_btn.click(
fn=infer_chatts_stream,
inputs=[prompt_input, upload, use_default_state],
outputs=[text_out]
)
if __name__ == '__main__':
demo.launch() |