import spaces # for ZeroGPU support import gradio as gr import pandas as pd import numpy as np import torch import subprocess from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoProcessor, ) # ─── MODEL SETUP ──────────────────────────────────────────────────────────────── MODEL_NAME = "bytedance-research/ChatTS-14B" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, trust_remote_code=True ) processor = AutoProcessor.from_pretrained( MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, trust_remote_code=True, device_map="auto", torch_dtype=torch.float16 ) model.eval() # ─── INFERENCE + VALIDATION ──────────────────────────────────────────────────── @spaces.GPU def generate_text(prompt): inputs = tokenizer([prompt], return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.2, top_p=0.9 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, label="Prompt"), outputs=gr.Textbox(lines=6, label="Generated Text") ) if __name__ == '__main__': subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) demo.launch()