Spaces:
Sleeping
Sleeping
File size: 20,704 Bytes
79e0f15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import os
import glob
import math
from functools import partial
import torch
import ipywidgets as widgets
import io
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from torch import nn
from thop import profile
is_flop_cal = False
import warnings
warnings.filterwarnings("ignore")
# Step 2: Creating a Vision Transformer
# normalise the torch
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
#用于执行无梯度截断正态分布初始化。这两个函数在模型初始化中使用,确保权重被适当地初始化。
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
def norm_cdf(x):
# computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
#对输入进行随机丢弃一部分元素,实现随机深度(Stochastic Depth)。
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
# work with diff dim tensors, not just 2D ConvNets
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + \
torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
#用于在残差块的主路径上应用 drop_path 函数。
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
#一个多层感知机(MLP)类,包含两个线性层和一个激活函数,用于在残差块中对特征进行非线性映射。
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# 自注意力机制类,用于在残差块中计算注意力权重并应用它们。
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C //
self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
# 一个残差块类,包含一个自注意力模块和一个MLP模块。
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
# 图像到块嵌入类,将输入图像分割成块并将它们映射到嵌入空间
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim,
kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
# Vision Transformer模型的主要实现。包含多个残差块、嵌入层等。(还需要学里面每一步代码具体在做什么)
class VisionTransformer(nn.Module):
"""
Vision Transformer
"""
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# classifier head
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def interpolate_pos_encoding(self, x, w, h):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(
math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
)
assert int(
w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def prepare_tokens(self, x):
B, nc, w, h = x.shape
x = self.patch_embed(x) # patch linear embedding
# add the [CLS] token to the embed patch tokens
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add positional encoding to each token
x = x + self.interpolate_pos_encoding(x, w, h)
return self.pos_drop(x)
def forward(self, x):
x = self.prepare_tokens(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x[:, 0], x[:, 1:] # return CLS token and attention_features maps
def get_last_selfattention(self, x):
x = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
# return attention of the last block
# print(f"return attention of the last block: {x.shape}")
# print(blk(x, return_attention=True).shape)
return blk(x, return_attention=True)
def get_intermediate_layers(self, x, n=1):
x = self.prepare_tokens(x)
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x))
return output
# Vision Transformer 模型的生成器类,用于实例化和配置特定模型。
class VitGenerator(object):
def __init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False):
self.name_model = name_model
self.patch_size = patch_size
self.evaluate = evaluate
self.device = device
self.verbose = verbose
self.model = self._getModel()
self._initializeModel()
if not random:
self._loadPretrainedWeights()
def _getModel(self):
if self.verbose:
pass
# print((f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}"))
if self.name_model == 'vit_tiny':
model = VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
elif self.name_model == 'vit_small':
model = VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
elif self.name_model == 'vit_base':
model = VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
else:
raise f"No model found with {self.name_model}"
return model
def _initializeModel(self):
if self.evaluate:
for p in self.model.parameters():
p.requires_grad = False
self.model.eval()
self.model.to(self.device)
def _loadPretrainedWeights(self):
if self.verbose:
pass
# print(("[INFO] Loading weights"))
url = None
if self.name_model == 'vit_small' and self.patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
elif self.name_model == 'vit_small' and self.patch_size == 8:
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
elif self.name_model == 'vit_base' and self.patch_size == 16:
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
elif self.name_model == 'vit_base' and self.patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
if url is None:
pass
# print((f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used"))
else:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/" + url)
self.model.load_state_dict(state_dict, strict=True)
# print(url)
def get_last_selfattention(self, img):
return self.model.get_last_selfattention(img.to(self.device))
def __call__(self, x):
return self.model(x)
# Step 3: Creating Visualization Functions
def transform(img, img_size):
img = transforms.Resize(img_size)(img)
img = transforms.ToTensor()(img)
return img
def visualize_predict(model, img_tensor, patch_size, device, video_name, frame_number, fig_name, combined_name):
if img_tensor.dim() == 3:
img_tensor = img_tensor.unsqueeze(0)
attention = visualize_attention(model, img_tensor, patch_size, device)
# save activation maps as png
# png_path = f'../visualisation/resnet50/{video_name}/frame_{frame_number}/'
# os.makedirs(png_path, exist_ok=True)
# get_activation_png(img, png_path, fig_name, attention)
# save activation features as npy
activations_dict, frame_npy_path = get_activation_npy(video_name, frame_number, fig_name, combined_name, attention)
return activations_dict, frame_npy_path
def visualize_attention(model, img_tensor, patch_size, device):
# img_tensor: format [1, C, H, W]
# Adjust the image dimensions to be divisible by the patch size
w, h = img_tensor.shape[2] - img_tensor.shape[2] % patch_size, img_tensor.shape[3] - img_tensor.shape[3] % patch_size
img_tensor = img_tensor[:, :, :w, :h]
w_featmap = img_tensor.shape[-2] // patch_size
h_featmap = img_tensor.shape[-1] // patch_size
attentions = model.get_last_selfattention(img_tensor.to(device))
nh = attentions.shape[1] # number of heads
# keep only the output patch attention
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
attentions = attentions.reshape(nh, w_featmap, h_featmap)
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()
return attentions
def get_activation_png(img, png_path, fig_name, attention):
n_heads = attention.shape[0]
# attention maps
for i in range(n_heads):
plt.imshow(attention[i], cmap='viridis') #cmap='viridis', cmap='inferno'
plt.title(f"Head n: {i + 1}")
plt.axis('off') # Turn off axis ticks and labels
# Save figures
fig_path = f'{png_path}{fig_name}_head_{i + 1}.png'
print(fig_path)
plt.savefig(fig_path)
plt.close()
# head mean map
plt.figure(figsize=(10, 10))
image_name = fig_name.replace('vit_feature_map_', '')
text = [f"{image_name}", "Head Mean"]
for i, fig in enumerate([img, np.mean(attention, 0)]):
plt.subplot(1, 2, i+1)
plt.imshow(fig, cmap='viridis')
plt.title(text[i])
plt.axis('off') # Turn off axis ticks and labels
fig_path1 = f'{png_path}{fig_name}_head_mean.png'
print(fig_path1)
print("----------------" + '\n')
plt.savefig(fig_path1)
plt.close()
# combine
# plt.figure(figsize=(20, 20))
# for i in range(n_heads):
# plt.subplot(n_heads//3, 3, i+1)
# plt.imshow(attention[i], cmap='inferno')
# plt.title(f"Head n: {i+1}")
# plt.tight_layout()
# fig_path2 = png_path + fig_name + '_heads.png'
# print(fig_path2 + '\n')
# plt.savefig(fig_path2)
# plt.close()
def get_activation_npy(video_name, frame_number, fig_name, combined_name, attention):
# save activation features as pny
# npy_path = f'../features/vit/{video_name}/frame_{frame_number}/'
# os.makedirs(npy_path, exist_ok=True)
mean_attention = attention.mean(axis=0)
frame_npy_path = f'../features/vit/{video_name}/frame_{frame_number}_{combined_name}.npy'
return mean_attention, frame_npy_path
class Loader(object):
def __init__(self):
self.uploader = widgets.FileUpload(accept='image/*', multiple=False)
self._start()
def _start(self):
display(self.uploader)
def getLastImage(self):
try:
for uploaded_filename in self.uploader.value:
uploaded_filename = uploaded_filename
img = Image.open(io.BytesIO(
bytes(self.uploader.value[uploaded_filename]['content'])))
return img
except:
return None
def saveImage(self, path):
with open(path, 'wb') as output_file:
for uploaded_filename in self.uploader.value:
content = self.uploader.value[uploaded_filename]['content']
output_file.write(content)
def process_video_frame(video_name, frame, frame_number, model, patch_size, device):
# resize image
if frame.dim() == 3:
frame = frame.unsqueeze(0)
if frame.shape[2:] != (224, 224):
frame_tensor = torch.nn.functional.interpolate(frame, size=(224, 224), mode='bicubic', align_corners=False)
else:
frame_tensor = frame
# Calculate FLOPs and Params
if is_flop_cal == True:
total_flops, total_params = profile(model.model, inputs=(frame_tensor,), verbose=False)
print(f"total FLOPs for ViT layerstack: {total_flops}, Params: {total_params}")
else:
total_flops, total_params = None, None
fig_name = f"vit_feature_map"
combined_name = f"vit_feature_map"
# activations_dict, frame_npy_path = visualize_predict(model, frame_tensor, patch_size, device, video_name, frame_number, fig_name, combined_name)
attention_features, frame_feature_npy_path = extract_features(model, frame_tensor, video_name, frame_number, combined_name)
return attention_features, frame_feature_npy_path, total_flops, total_params
def extract_features(model, img_tensor, video_name, frame_number, combined_name):
if img_tensor.dim() == 3:
img_tensor = img_tensor.unsqueeze(0)
cls_token, attention_features = model(img_tensor)
attention_features = attention_features.squeeze(0)
frame_feature_npy_path = f'../features/vit/{video_name}/frame_attention_{frame_number}_{combined_name}.npy'
return attention_features, frame_feature_npy_path
if __name__ == '__main__':
# Step 4: Visualizing Images
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cuda":
torch.cuda.set_device(0)
name_model = 'vit_base'
patch_size = 16
model = VitGenerator(name_model, patch_size,
device, evaluate=True, random=False, verbose=True)
video_type = 'test'
# Test
if video_type == 'test':
metadata_path = "../../metadata/test_videos.csv"
# NR:
elif video_type == 'resolution_ugc':
resolution = '360P'
metadata_path = f"../../metadata/YOUTUBE_UGC_{resolution}_metadata.csv"
else:
metadata_path = f'../../metadata/{video_type.upper()}_metadata.csv'
ugcdata = pd.read_csv(metadata_path)
for i in range(len(ugcdata)):
video_name = ugcdata['vid'][i]
sampled_frame_path = os.path.join('../..', 'video_sampled_frame', 'sampled_frame', f'{video_name}')
print(f"Processing video: {video_name}")
image_paths = glob.glob(os.path.join(sampled_frame_path, f'{video_name}_*.png'))
frame_number = 0
for image in image_paths:
print(f"{image}")
frame_number += 1
process_video_frame(video_name, image, frame_number, model, patch_size, device)
|