Spaces:
Running
Running
import json | |
import logging | |
from collections.abc import Generator | |
from copy import deepcopy | |
from typing import Any, Union | |
from core.agent.base_agent_runner import BaseAgentRunner | |
from core.app.apps.base_app_queue_manager import PublishFrom | |
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage | |
from core.model_runtime.entities.message_entities import ( | |
AssistantPromptMessage, | |
PromptMessage, | |
PromptMessageContentType, | |
SystemPromptMessage, | |
TextPromptMessageContent, | |
ToolPromptMessage, | |
UserPromptMessage, | |
) | |
from core.tools.entities.tool_entities import ToolInvokeMeta | |
from core.tools.tool_engine import ToolEngine | |
from models.model import Message | |
logger = logging.getLogger(__name__) | |
class FunctionCallAgentRunner(BaseAgentRunner): | |
def run(self, | |
message: Message, query: str, **kwargs: Any | |
) -> Generator[LLMResultChunk, None, None]: | |
""" | |
Run FunctionCall agent application | |
""" | |
app_generate_entity = self.application_generate_entity | |
app_config = self.app_config | |
prompt_template = app_config.prompt_template.simple_prompt_template or '' | |
prompt_messages = self.history_prompt_messages | |
prompt_messages = self._init_system_message(prompt_template, prompt_messages) | |
prompt_messages = self._organize_user_query(query, prompt_messages) | |
# convert tools into ModelRuntime Tool format | |
tool_instances, prompt_messages_tools = self._init_prompt_tools() | |
iteration_step = 1 | |
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1 | |
# continue to run until there is not any tool call | |
function_call_state = True | |
llm_usage = { | |
'usage': None | |
} | |
final_answer = '' | |
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage): | |
if not final_llm_usage_dict['usage']: | |
final_llm_usage_dict['usage'] = usage | |
else: | |
llm_usage = final_llm_usage_dict['usage'] | |
llm_usage.prompt_tokens += usage.prompt_tokens | |
llm_usage.completion_tokens += usage.completion_tokens | |
llm_usage.prompt_price += usage.prompt_price | |
llm_usage.completion_price += usage.completion_price | |
model_instance = self.model_instance | |
while function_call_state and iteration_step <= max_iteration_steps: | |
function_call_state = False | |
if iteration_step == max_iteration_steps: | |
# the last iteration, remove all tools | |
prompt_messages_tools = [] | |
message_file_ids = [] | |
agent_thought = self.create_agent_thought( | |
message_id=message.id, | |
message='', | |
tool_name='', | |
tool_input='', | |
messages_ids=message_file_ids | |
) | |
# recalc llm max tokens | |
self.recalc_llm_max_tokens(self.model_config, prompt_messages) | |
# invoke model | |
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm( | |
prompt_messages=prompt_messages, | |
model_parameters=app_generate_entity.model_config.parameters, | |
tools=prompt_messages_tools, | |
stop=app_generate_entity.model_config.stop, | |
stream=self.stream_tool_call, | |
user=self.user_id, | |
callbacks=[], | |
) | |
tool_calls: list[tuple[str, str, dict[str, Any]]] = [] | |
# save full response | |
response = '' | |
# save tool call names and inputs | |
tool_call_names = '' | |
tool_call_inputs = '' | |
current_llm_usage = None | |
if self.stream_tool_call: | |
is_first_chunk = True | |
for chunk in chunks: | |
if is_first_chunk: | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
is_first_chunk = False | |
# check if there is any tool call | |
if self.check_tool_calls(chunk): | |
function_call_state = True | |
tool_calls.extend(self.extract_tool_calls(chunk)) | |
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls]) | |
try: | |
tool_call_inputs = json.dumps({ | |
tool_call[1]: tool_call[2] for tool_call in tool_calls | |
}, ensure_ascii=False) | |
except json.JSONDecodeError as e: | |
# ensure ascii to avoid encoding error | |
tool_call_inputs = json.dumps({ | |
tool_call[1]: tool_call[2] for tool_call in tool_calls | |
}) | |
if chunk.delta.message and chunk.delta.message.content: | |
if isinstance(chunk.delta.message.content, list): | |
for content in chunk.delta.message.content: | |
response += content.data | |
else: | |
response += chunk.delta.message.content | |
if chunk.delta.usage: | |
increase_usage(llm_usage, chunk.delta.usage) | |
current_llm_usage = chunk.delta.usage | |
yield chunk | |
else: | |
result: LLMResult = chunks | |
# check if there is any tool call | |
if self.check_blocking_tool_calls(result): | |
function_call_state = True | |
tool_calls.extend(self.extract_blocking_tool_calls(result)) | |
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls]) | |
try: | |
tool_call_inputs = json.dumps({ | |
tool_call[1]: tool_call[2] for tool_call in tool_calls | |
}, ensure_ascii=False) | |
except json.JSONDecodeError as e: | |
# ensure ascii to avoid encoding error | |
tool_call_inputs = json.dumps({ | |
tool_call[1]: tool_call[2] for tool_call in tool_calls | |
}) | |
if result.usage: | |
increase_usage(llm_usage, result.usage) | |
current_llm_usage = result.usage | |
if result.message and result.message.content: | |
if isinstance(result.message.content, list): | |
for content in result.message.content: | |
response += content.data | |
else: | |
response += result.message.content | |
if not result.message.content: | |
result.message.content = '' | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
yield LLMResultChunk( | |
model=model_instance.model, | |
prompt_messages=result.prompt_messages, | |
system_fingerprint=result.system_fingerprint, | |
delta=LLMResultChunkDelta( | |
index=0, | |
message=result.message, | |
usage=result.usage, | |
) | |
) | |
assistant_message = AssistantPromptMessage( | |
content='', | |
tool_calls=[] | |
) | |
if tool_calls: | |
assistant_message.tool_calls=[ | |
AssistantPromptMessage.ToolCall( | |
id=tool_call[0], | |
type='function', | |
function=AssistantPromptMessage.ToolCall.ToolCallFunction( | |
name=tool_call[1], | |
arguments=json.dumps(tool_call[2], ensure_ascii=False) | |
) | |
) for tool_call in tool_calls | |
] | |
else: | |
assistant_message.content = response | |
prompt_messages.append(assistant_message) | |
# save thought | |
self.save_agent_thought( | |
agent_thought=agent_thought, | |
tool_name=tool_call_names, | |
tool_input=tool_call_inputs, | |
thought=response, | |
tool_invoke_meta=None, | |
observation=None, | |
answer=response, | |
messages_ids=[], | |
llm_usage=current_llm_usage | |
) | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
final_answer += response + '\n' | |
# call tools | |
tool_responses = [] | |
for tool_call_id, tool_call_name, tool_call_args in tool_calls: | |
tool_instance = tool_instances.get(tool_call_name) | |
if not tool_instance: | |
tool_response = { | |
"tool_call_id": tool_call_id, | |
"tool_call_name": tool_call_name, | |
"tool_response": f"there is not a tool named {tool_call_name}", | |
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict() | |
} | |
else: | |
# invoke tool | |
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke( | |
tool=tool_instance, | |
tool_parameters=tool_call_args, | |
user_id=self.user_id, | |
tenant_id=self.tenant_id, | |
message=self.message, | |
invoke_from=self.application_generate_entity.invoke_from, | |
agent_tool_callback=self.agent_callback, | |
) | |
# publish files | |
for message_file, save_as in message_files: | |
if save_as: | |
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as) | |
# publish message file | |
self.queue_manager.publish(QueueMessageFileEvent( | |
message_file_id=message_file.id | |
), PublishFrom.APPLICATION_MANAGER) | |
# add message file ids | |
message_file_ids.append(message_file.id) | |
tool_response = { | |
"tool_call_id": tool_call_id, | |
"tool_call_name": tool_call_name, | |
"tool_response": tool_invoke_response, | |
"meta": tool_invoke_meta.to_dict() | |
} | |
tool_responses.append(tool_response) | |
prompt_messages = self._organize_assistant_message( | |
tool_call_id=tool_call_id, | |
tool_call_name=tool_call_name, | |
tool_response=tool_response['tool_response'], | |
prompt_messages=prompt_messages, | |
) | |
if len(tool_responses) > 0: | |
# save agent thought | |
self.save_agent_thought( | |
agent_thought=agent_thought, | |
tool_name=None, | |
tool_input=None, | |
thought=None, | |
tool_invoke_meta={ | |
tool_response['tool_call_name']: tool_response['meta'] | |
for tool_response in tool_responses | |
}, | |
observation={ | |
tool_response['tool_call_name']: tool_response['tool_response'] | |
for tool_response in tool_responses | |
}, | |
answer=None, | |
messages_ids=message_file_ids | |
) | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
# update prompt tool | |
for prompt_tool in prompt_messages_tools: | |
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) | |
iteration_step += 1 | |
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages) | |
self.update_db_variables(self.variables_pool, self.db_variables_pool) | |
# publish end event | |
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult( | |
model=model_instance.model, | |
prompt_messages=prompt_messages, | |
message=AssistantPromptMessage( | |
content=final_answer | |
), | |
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(), | |
system_fingerprint='' | |
)), PublishFrom.APPLICATION_MANAGER) | |
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool: | |
""" | |
Check if there is any tool call in llm result chunk | |
""" | |
if llm_result_chunk.delta.message.tool_calls: | |
return True | |
return False | |
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool: | |
""" | |
Check if there is any blocking tool call in llm result | |
""" | |
if llm_result.message.tool_calls: | |
return True | |
return False | |
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]: | |
""" | |
Extract tool calls from llm result chunk | |
Returns: | |
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)] | |
""" | |
tool_calls = [] | |
for prompt_message in llm_result_chunk.delta.message.tool_calls: | |
tool_calls.append(( | |
prompt_message.id, | |
prompt_message.function.name, | |
json.loads(prompt_message.function.arguments), | |
)) | |
return tool_calls | |
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]: | |
""" | |
Extract blocking tool calls from llm result | |
Returns: | |
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)] | |
""" | |
tool_calls = [] | |
for prompt_message in llm_result.message.tool_calls: | |
tool_calls.append(( | |
prompt_message.id, | |
prompt_message.function.name, | |
json.loads(prompt_message.function.arguments), | |
)) | |
return tool_calls | |
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]: | |
""" | |
Initialize system message | |
""" | |
if not prompt_messages and prompt_template: | |
return [ | |
SystemPromptMessage(content=prompt_template), | |
] | |
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template: | |
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template)) | |
return prompt_messages | |
def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]: | |
""" | |
Organize user query | |
""" | |
if self.files: | |
prompt_message_contents = [TextPromptMessageContent(data=query)] | |
for file_obj in self.files: | |
prompt_message_contents.append(file_obj.prompt_message_content) | |
prompt_messages.append(UserPromptMessage(content=prompt_message_contents)) | |
else: | |
prompt_messages.append(UserPromptMessage(content=query)) | |
return prompt_messages | |
def _organize_assistant_message(self, tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None, | |
prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]: | |
""" | |
Organize assistant message | |
""" | |
prompt_messages = deepcopy(prompt_messages) | |
if tool_response is not None: | |
prompt_messages.append( | |
ToolPromptMessage( | |
content=tool_response, | |
tool_call_id=tool_call_id, | |
name=tool_call_name, | |
) | |
) | |
return prompt_messages | |
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]: | |
""" | |
As for now, gpt supports both fc and vision at the first iteration. | |
We need to remove the image messages from the prompt messages at the first iteration. | |
""" | |
prompt_messages = deepcopy(prompt_messages) | |
for prompt_message in prompt_messages: | |
if isinstance(prompt_message, UserPromptMessage): | |
if isinstance(prompt_message.content, list): | |
prompt_message.content = '\n'.join([ | |
content.data if content.type == PromptMessageContentType.TEXT else | |
'[image]' if content.type == PromptMessageContentType.IMAGE else | |
'[file]' | |
for content in prompt_message.content | |
]) | |
return prompt_messages |