Spaces:
Running
Running
from typing import Optional | |
from core.model_manager import ModelInstance | |
from core.rag.models.document import Document | |
class RerankRunner: | |
def __init__(self, rerank_model_instance: ModelInstance) -> None: | |
self.rerank_model_instance = rerank_model_instance | |
def run(self, query: str, documents: list[Document], score_threshold: Optional[float] = None, | |
top_n: Optional[int] = None, user: Optional[str] = None) -> list[Document]: | |
""" | |
Run rerank model | |
:param query: search query | |
:param documents: documents for reranking | |
:param score_threshold: score threshold | |
:param top_n: top n | |
:param user: unique user id if needed | |
:return: | |
""" | |
docs = [] | |
doc_id = [] | |
unique_documents = [] | |
for document in documents: | |
if document.metadata['doc_id'] not in doc_id: | |
doc_id.append(document.metadata['doc_id']) | |
docs.append(document.page_content) | |
unique_documents.append(document) | |
documents = unique_documents | |
rerank_result = self.rerank_model_instance.invoke_rerank( | |
query=query, | |
docs=docs, | |
score_threshold=score_threshold, | |
top_n=top_n, | |
user=user | |
) | |
rerank_documents = [] | |
for result in rerank_result.docs: | |
# format document | |
rerank_document = Document( | |
page_content=result.text, | |
metadata={ | |
"doc_id": documents[result.index].metadata['doc_id'], | |
"doc_hash": documents[result.index].metadata['doc_hash'], | |
"document_id": documents[result.index].metadata['document_id'], | |
"dataset_id": documents[result.index].metadata['dataset_id'], | |
'score': result.score | |
} | |
) | |
rerank_documents.append(rerank_document) | |
return rerank_documents | |