Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import DuckDuckGoSearchTool,GoogleSearchTool, HfApiModel, PythonInterpreterTool, VisitWebpageTool, CodeAgent,Tool, LiteLLMModel | |
import hashlib | |
import json | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TransformersEngine | |
import wikipedia | |
from tooling import WikipediaPageFetcher,MathModelQuerer, YoutubeTranscriptFetcher, CodeModelQuerer | |
from langchain_community.agent_toolkits.load_tools import load_tools | |
import time | |
import torch | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
cache = {} | |
class WebSearchTool(DuckDuckGoSearchTool): | |
name = "web_search_ddg" | |
description = "Search the web using DuckDuckGo" | |
web_search_ddf = WebSearchTool() | |
google_search = GoogleSearchTool(provider="serper") | |
python_interpreter = PythonInterpreterTool(authorized_imports = [ | |
# standard library | |
'os', # For file path manipulation, checking existence, deletion | |
'glob', # Find files matching specific patterns | |
'pathlib', # Alternative for path manipulation | |
'sys', | |
'math', | |
'random', | |
'datetime', | |
'time', | |
'json', | |
'csv', | |
're', | |
'collections', | |
'itertools', | |
'functools', | |
'io', | |
'base64', | |
'hashlib', | |
'pathlib', | |
'glob', | |
# Third-Party Libraries (ensure they are installed in the execution env) | |
'pandas', # Data manipulation and analysis | |
'numpy', # Numerical operations | |
'scipy', # Scientific and technical computing (stats, optimize, etc.) | |
'sklearn', # Machine learning | |
]) | |
visit_webpage_tool = VisitWebpageTool() | |
wiki_tool = WikipediaPageFetcher() | |
yt_transcript_fetcher = YoutubeTranscriptFetcher() | |
# math_model_querer = MathModelQuerer() | |
# code_model_querer = CodeModelQuerer() | |
# batch of tools fromm Langchain. Credits DataDiva88 | |
lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0]) | |
lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0]) | |
lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0]) | |
lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0]) | |
lc_stackechange = Tool.from_langchain(load_tools(["stackexchange"])[0]) | |
def load_cached_answer(question_id: str) -> str: | |
if question_id in cache.keys(): | |
return cache[question_id] | |
else: | |
return None | |
def cache_answer(question_id: str, answer: str): | |
cache[question_id] = answer | |
# --- Model Setup --- | |
#MODEL_NAME = 'Qwen/Qwen2.5-3B-Instruct' # 'meta-llama/Llama-3.2-3B-Instruct' | |
# "Qwen/Qwen2.5-VL-3B-Instruct"#'meta-llama/Llama-2-7b-hf'#'meta-llama/Llama-3.1-8B-Instruct'#'TinyLlama/TinyLlama-1.1B-Chat-v1.0'#'mistralai/Mistral-7B-Instruct-v0.2'#'microsoft/DialoGPT-small'# 'EleutherAI/gpt-neo-2.7B'#'distilbert/distilgpt2'#'deepseek-ai/DeepSeek-R1-Distill-Qwen-7B'#'mistralai/Mistral-7B-Instruct-v0.2' | |
def load_model(model_name): | |
"""Download and load the model and tokenizer.""" | |
try: | |
print(f"Loading model {MODEL_NAME}...") | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
print(f"Model {MODEL_NAME} loaded successfully.") | |
transformers_engine = TransformersEngine(pipeline("text-generation", model=model, tokenizer=tokenizer)) | |
return transformers_engine, model | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
# Load the model and tokenizer locally | |
# model, tokenizer = load_model() | |
#model_id = "meta-llama/Llama-3.1-8B-Instruct" # "microsoft/phi-2"# not working out of the box"google/gemma-2-2b-it" #toobig"Qwen/Qwen1.5-7B-Chat"#working but stupid: "meta-llama/Llama-3.2-3B-Instruct" | |
model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=512) | |
#from smolagents import TransformersModel | |
# model = TransformersModel( | |
# model_id=model_id, | |
# max_new_tokens=256) | |
# model = HfApiModel() | |
lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0]) | |
lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0]) | |
lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0]) | |
lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0]) | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.agent = CodeAgent( | |
model=model, | |
tools=[google_search,web_search_ddf, python_interpreter, visit_webpage_tool, wiki_tool,lc_wikipedia,lc_arxiv,lc_pubmed,lc_stackechange], | |
max_steps=10, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=3, | |
add_base_tools=True, | |
additional_authorized_imports=['requests', 'wikipedia', 'pandas','datetime'] | |
) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
answer = self.agent.run(question) | |
return answer | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
time.sleep(60) | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
cached = load_cached_answer(task_id) | |
if cached: | |
submitted_answer = cached | |
print(f"Loaded cached answer for task {task_id}") | |
else: | |
submitted_answer = agent(question_text) | |
cache_answer(task_id, submitted_answer) | |
print(f"Generated and cached answer for task {task_id}") | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-" * (60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |