Spaces:
Runtime error
Runtime error
text-generation-webui
/
installer_files
/env
/lib
/python3.11
/site-packages
/bin
/convert-lora-to-ggml.py
| #!/usr/bin/env python3 | |
| from __future__ import annotations | |
| import json | |
| import os | |
| import re | |
| import struct | |
| import sys | |
| from typing import Any, BinaryIO, Sequence | |
| import numpy as np | |
| import torch | |
| NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} | |
| HF_SUBLAYER_TO_GGML = { | |
| "self_attn.q_proj": "attn_q", | |
| "self_attn.k_proj": "attn_k", | |
| "self_attn.v_proj": "attn_v", | |
| "self_attn.o_proj": "attn_output", | |
| "mlp.gate_proj": "ffn_gate", | |
| "mlp.down_proj": "ffn_down", | |
| "mlp.up_proj": "ffn_up", | |
| "input_layernorm": "attn_norm", | |
| "post_attention_layernorm": "ffn_norm", | |
| } | |
| def translate_tensor_name(t: str) -> str: | |
| match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t) | |
| if match: | |
| nn = match.group(1) | |
| sub_layer = match.group(2) | |
| lora_type = match.group(3) | |
| sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer) | |
| if sub_layer_renamed is None: | |
| print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}") | |
| sys.exit(1) | |
| output_string = ( | |
| f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}" | |
| ) | |
| return output_string | |
| else: | |
| print(f"Error: unrecognized tensor {t}") | |
| sys.exit(1) | |
| def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: | |
| fout.write(b"ggla"[::-1]) # magic (ggml lora) | |
| fout.write(struct.pack("i", 1)) # file version | |
| fout.write(struct.pack("i", params["r"])) | |
| # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int | |
| # but some models ship a float value instead | |
| # let's convert to int, but fail if lossless conversion is not possible | |
| assert ( | |
| int(params["lora_alpha"]) == params["lora_alpha"] | |
| ), "cannot convert float to int losslessly" | |
| fout.write(struct.pack("i", int(params["lora_alpha"]))) | |
| def write_tensor_header( | |
| self, name: str, shape: Sequence[int], data_type: np.dtype[Any] | |
| ) -> None: | |
| sname = name.encode("utf-8") | |
| fout.write( | |
| struct.pack( | |
| "iii", | |
| len(shape), | |
| len(sname), | |
| NUMPY_TYPE_TO_FTYPE[data_type.name], | |
| ) | |
| ) | |
| fout.write(struct.pack("i" * len(shape), *shape[::-1])) | |
| fout.write(sname) | |
| fout.seek((fout.tell() + 31) & -32) | |
| if len(sys.argv) != 2: | |
| print(f"Usage: python {sys.argv[0]} <path>") | |
| print( | |
| "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" | |
| ) | |
| sys.exit(1) | |
| input_json = os.path.join(sys.argv[1], "adapter_config.json") | |
| input_model = os.path.join(sys.argv[1], "adapter_model.bin") | |
| output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") | |
| model = torch.load(input_model, map_location="cpu") | |
| with open(input_json, "r") as f: | |
| params = json.load(f) | |
| if params["peft_type"] != "LORA": | |
| print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") | |
| sys.exit(1) | |
| if params["fan_in_fan_out"] is True: | |
| print("Error: param fan_in_fan_out is not supported") | |
| sys.exit(1) | |
| if params["bias"] is not None and params["bias"] != "none": | |
| print("Error: param bias is not supported") | |
| sys.exit(1) | |
| # TODO: these seem to be layers that have been trained but without lora. | |
| # doesn't seem widely used but eventually should be supported | |
| if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: | |
| print("Error: param modules_to_save is not supported") | |
| sys.exit(1) | |
| with open(output_path, "wb") as fout: | |
| fout.truncate() | |
| write_file_header(fout, params) | |
| for k, v in model.items(): | |
| if k.endswith(".default.weight"): | |
| k = k.replace(".default.weight", ".weight") | |
| if k in ["llama_proj.weight", "llama_proj.bias"]: | |
| continue | |
| if k.endswith("lora_A.weight"): | |
| if v.dtype != torch.float16 and v.dtype != torch.float32: | |
| v = v.float() | |
| v = v.T | |
| else: | |
| v = v.float() | |
| t = v.detach().numpy() | |
| tname = translate_tensor_name(k) | |
| print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") | |
| write_tensor_header(fout, tname, t.shape, t.dtype) | |
| t.tofile(fout) | |
| print(f"Converted {input_json} and {input_model} to {output_path}") | |